What is a Transformer?

Transformers are completely static electrical devices which convert altemating current from one voltage level to another.
General purpose transformers are rated 600 volts and below for supplying appliance, lighting, and power loads from electrical distribution systems. Standard distribution voltages are 600, 480, and 240 volts; standard load voltages are 480, 240, and 120 volts.
The transformer is used to match the voltage supply to the electrical load. They can increase (step-up) or decrease (step-down) voltages. Since no vaults are required for installation, dry type transformers can be located right at the load to provide correct voltage for the application. This eliminates the need for long, costly, low voltage feeders.
Siemens general purpose transformers meet applicable NEMA, ANSI, UL, and IEEE standards.
ANSI C89.2/NEMA ST 20
ANSI C57.12.91
ANSI C57.96
UL 506
UL 1561

Contents

Overview	$1-3$
Selection and Application	4
Catalog Coding System	5
Encapsulated Transformers	6
Ventilated Transformers	7
Single Phase and Three Phase	
Transformers	$8-10$
KVA/Ampere Tables	$8-10$
Electrostatic Shielded	11
Non-Linear Loads	12
Drive Transformers	13
K-Factor	$14-15$
Buck-Boost Transformers	$16-21$
Industrial Control Circuit	$22-26$
Transformers	$27-29$
Glossary	

What does a Transformer do?

Autotransformers

Standard transformers are referred to as insulating transformers, or isolation transformers, because the primary and secondary windings are separated by insulation. There is no electrical connection between the windings; the voltage is magnetically induced between the primary and secondary. As such, twowinding transformers isolate the load circuit from the supply circuit.

Autotransformers are specially designed transformers consisting of one continuous winding. The primary and secondary are electrically connected. The required secondary voltage is obtained by designing a tap at the appropriate tum location. Autotransformers can be used in three phase or single phase applications to perform the same function as two-winding transformers, with the exception of isolating two circuits. Since they are physically connected intemally, autotransformers do not provide circuit isolation and in some cases, local codes may restrict their use.

Autotransformer

Overview, Selection and Application

Insulation Systems

There are four types of insulation systems commonly used in dry type transformers. Each is made of materials that will withstand a certain temperature without shortening the life of the transformer. This means that regardless of the insulation system used, transformers operating at their rated temperature rise will have essentially the same design life. Each insulation system will withstand the following average temperature rise over a $40^{\circ} \mathrm{C}$ ambient as defined by ANSI (American National Standards Institute) and NEMA (National Electrical Manufacturers Association).

Insulation System Classification			
Maximum Ambient	+Winding Rise	+Hot Spot	=Temp. Class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

Temperature Rise

The temperature rise for transformers is the average temperature rise of the aluminum or copper conductor inside the coil windings. The temperature rise does not apply to the outside surface, the core, or any part of the transformeronly the coil. The temperature rise of the coil is set by the designer and must be compatible with the limit of the insulation system. That is, when a $220^{\circ} \mathrm{C}$ rise insulation system is used, the rise of the coil must not exceed $150^{\circ} \mathrm{C}$. Surface temperatures on transformers are established by Underwriter's Laboratories (UL).

${ }^{\circ} \mathbf{C}-{ }^{\circ} \mathbf{F}$	${ }^{\circ} \mathbf{C}-{ }^{\circ} \mathbf{F}$
$0^{\circ}-32^{\circ}$	$100^{\circ}-212^{\circ}$
$10^{\circ}-50^{\circ}$	$105^{\circ}-221^{\circ}$
$30^{\circ}-86^{\circ}$	$115^{\circ}-239^{\circ}$
$40^{\circ}-104^{\circ}$	$150^{\circ}-302^{\circ}$
$55^{\circ}-131^{\circ}$	$185^{\circ}-365^{\circ}$
$80^{\circ}-176^{\circ}$	$220^{\circ}-428^{\circ}$
$90^{\circ}-194^{\circ}$	

Low Temperature Rise

Transformers rated 15 KVA and above using $220^{\circ} \mathrm{C}$ insulation can be designed for $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ winding temperature rise as an optional feature. Reducing the temperature from $150^{\circ} \mathrm{C}$ rise provides several benefits:

- Reduced losses, lower operating costs, higher efficiency.
- Additional capacity for emergency overloads.
- Longer expected transformer life.
- Conserves electrical power, less heat generated, saves energy.

Rating of Insulation	Design Temp. Rise	Operating Temperature	Overload Capability
$220^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	30%
$220^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$	15%
$220^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	0%

When operated at rated KVA and temperature rise, losses for $115^{\circ} \mathrm{C}$ rise are about $10-20 \%$ less, and $80^{\circ} \mathrm{C}$ rise are about 20-35\% less than transformers with $150^{\circ} \mathrm{C}$ rise $/ 220^{\circ} \mathrm{C}$ insulation system.

$40^{\circ} \mathrm{C}$ Maximum Ambient	$80^{\circ} \mathrm{C}$ Winding Rise	$\begin{aligned} & \hline 30^{\circ} \mathrm{C} \\ & \text { Hot Spot } \\ & \text { Allowance } \end{aligned}$	$70^{\circ} \mathrm{C}$ Reserve (30\%)
	$110^{\circ} \mathrm{C}$ Hot Spot Rise $\left(80^{\circ} \mathrm{C}+30^{\circ} \mathrm{C}\right)$		
$115^{\circ} \mathrm{C}$ Rise $\quad 150^{\circ} \mathrm{C} \quad 220^{\circ} \mathrm{C}$			
$40^{\circ} \mathrm{C}$ Maximum Ambient	$115^{\circ} \mathrm{C}$ Winding Rise	$\begin{aligned} & 30^{\circ} \mathrm{C} \\ & \text { Hot Spot } \\ & \text { Allowance } \end{aligned}$	$\begin{aligned} & 35^{\circ} \mathrm{C} \\ & \text { Reserve } \\ & \text { (15\%) } \end{aligned}$
	$145^{\circ} \mathrm{C}$ Hot Spot Rise $\left(115^{\circ} \mathrm{C}+30^{\circ} \mathrm{C}\right)$		
$150^{\circ} \mathrm{C}$ Rise $\quad 185^{\circ} \mathrm{C} \quad 220^{\circ} \mathrm{C}$			
$40^{\circ} \mathrm{C}$ Maximum Ambient	$150^{\circ} \mathrm{C}$ Winding Rise		$30^{\circ} \mathrm{C}$ Hot Spot Allowance
	$180^{\circ} \mathrm{C}$ Hot Spot Rise		

Rating

The transformer rating includes its KVA, phase, frequency, voltages, taps, connections, and temperature rise. This information is shown on the nameplate.

Overload Capability

Per ANSI loading guides, the amount, frequency, and duration of loading cycles determine a transformer's life. Transformers can deliver short-term overloads without being damaged if the overload period is preceded and followed by reduced loads. (Reference ANSI C57.96).

Ambient Temperature and Altitude

The ambient air temperature should not exceed $30^{\circ} \mathrm{C}$ average, or $40^{\circ} \mathrm{C}$ maximum over a 24 -hour period, and the altitude should not exceed 3300 feet above sea level for normal operation.

Basic Impulse Levels

Basic impulse level (BIL, or kv-BIL) is the ability of the transformer insulation to withstand high voltage surges due to switching or lightning. Dry type 600 volt class transformers are rated 10 kv-BIL per industry standards.

Series-Multiple Connections

Transformers with two identical voltages (e.g. 120/240 or 120×240) may be connected either in series or in parallel per the connection diagrams. Connected in series, the transformer will provide the higher voltage (240 volts); connected in parallel, the lower voltage (120 volts) is obtained.

If the dual voltage is separated by an " X " (120×240), the transformer can be connected only for 120 volts or 240 volts. But, if it is separated by a "slash" (120/240), an additional connection is possible since the mid-point becomes available for 240/120 3-wire operation.

Series Connection (typical)

Multiple (Parallel) Connection (typical)

Voltage Termination

Both high voltage and low voltage windings are terminated in the transformer wiring compartment. The high voltage terminations are identified in accordance with NEMA standards as $\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3$, the low voltage leads as $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ and the neutral as X . The connection diagram on the transformer nameplate shows the proper connections for series or multiple connections and tap settings.

Voltage Changing Taps

Taps are frequently added on the primary winding to change the tums ratio and compensate for high or low line voltages. The number of taps and the tap ratio depend on the KVA size and the design volts per tum ratio. Standard taps are two 5\% below normal on most smaller transformers to provide a 10\% range of tap voltage adjustment. Most larger transformers have six taps - four 2-1/2\% below normal and two 2-1/2\% above normal for a 15% range of tap voltage adjustment. For some ratings, the actual number of taps and the tap ratio may vary based on the volts per tum ratio required for the design.

Sound Levels

All transformers that are energized will produce an audible noise that sounds like a "hum." ANSI and NEMA standards for average sound levels are shown below. Transformers can be custom designed for sound levels below standard when specified.

KVA	Average dB Sound Level (1)
$0-9$	40
$10-50$	45
$51-150$	50
$151-300$	55
$301-500$	60
$501-700$	62
$701-1000$	64

(1) ANSI C89.2/NEMA ST20 ($150^{\circ} \mathrm{C}$ RISE K-1)

Reducing Noise Levels

The sound level of background music, a typical classroom, or conversation at 3 feet is about 60 dB . The ambient sound level, or background noise can reach 90 dB in typical industrial locations. Generally, sound levels above 70dB are considered annoying and 100 dB very loud. To achieve a "quiet" transformer installation, use the following tips:

Taps		Rated Line Voltage					
		120	208	240	277	480	600
2-5\% FCBN	-5\%	114	198	228	263	456	570
Figure A	-10\%	108	187	216	249	432	540
	+5\%	126	218	252	291	504	630
2-2.5\% FCAN	+2.5\%	123	213	246	284	492	615
4-2.5\% FCBN	-2.5\%	117	203	234	270	468	585
Figure B	-5\%	114	198	228	263	456	570
	-7.5\%	111	192	222	256	444	555
	-10\%	108	187	216	249	432	540

Figure A (typical)

Figure B (typical)

Average ambient sound level of typical locations

1. Install the transformer so that vibrations are not transmitted to the structural parts of the building. M ounting should be on a solid wall, floor, or other structure with solid mass. Mounts must be isolated and properly loaded, avoiding direct contact with other metal structures.
2. Isolate the transformer by using flexible couplings and conductors to help prevent vibrations being transmitted to other equipment. Make sure shipping braces and hold-down bolts are loosened or removed as specified by the manufacturer's installation manual. Ventilated transformers should "float" on vibration dampening pads located between the enclosure and the core and coil assembly.
3. Locate the transformer where sound is not significantly increased by sound reflection. When transformers are mounted in a corner or near the ceiling, the adjacent surfaces act as a megaphone. Halls or small and narrow areas with short distance between multiple reflective areas will also amplify sound.
4. Transformer noise can be reduced in a closet or behind a wall if the wall has no openings and is not subject to vibrations from the transformer. Make sure the area has proper air ventilation. Curtains, screens, and other ceiling or wall sound treatments are generally not effective baniers to transformer noise.
5. Locate the transformer away from areas where noise is undesirable. Improper location and installation can increase the noise level 10 dB or more and cause complaints about transformer noise.

Selection Factors

The most important thing to remember when selecting a transformer is to choose a unit that matches supply and load conditions. You must first determine:

Line (available)	Load (needed)
Voltage	KVA
Frequency	Voltage
Phase	Frequency
	Phase

Selecting Transformer KVA Rating

You will usually know your load requirements. If not, maximum load current multiplied by the load voltage gives volt-amp capacity for single phase applications. For three phase applications, multiply load current times load voltage times 1.732. The transformer must have this minimum nameplate capacity in volt-amps (or KVA if voltamps has been divided by 1000).

Single phase:

KVA $=($ FLA \times Volts $) \div 1000$

Three phase:

KVA $=($ FLA \times Volts $\times 1.732) \div 1000$
Usually, some provision for future increase in load should be made when selecting the transformer. For example, if maximum load current is 50 amps and load voltage is 120 , single phase, the requirement is $6,000 \mathrm{VA}$ or 6 KVA . The next largest standard single phase unit is $7-1 / 2 \mathrm{KVA}$, which allows for future load expansion. If load requirements are given in watts, the power factor of the load must be considered. Divide the
watts by the power factor to determine VA capacity:

$$
\text { VA capacity }=\frac{\text { Watts }}{\text { Power Factor }}
$$

$$
\text { KVA capacity }=\frac{\text { KW }}{\text { Power Factor }}
$$

When motors are installed in the circuit, the current required to deliver rated motor horsepower dictates the minimum transformer KVA required.

Selecting Voltage Ratings

Next select the proper line and load voltages. In most cases, you will already know the power supply and load ratings. In single phase circuits, the transformer primary must match the line voltage. For example, if the line voltage is rated single phase, 60 Hz 480 volts, a transformer rated 240×480 volts primary, or 480 volts primary, with taps is suitable. The same principle applies to load voltage.

Frequency and Phase

The transformer cannot change the frequency of the supply. Therefore, it the load is rated 60 Hz , the supply must also be rated 60 Hz . Transformers rated to carry 60 Hz should not be used on other frequencies. Transformers rated 50 Hz can be used for either 50 or 60 Hz .

If the load is three phase, both the supply and transformer must be three phase. If the load is single phase, the supply can be either single or three phase, but the transformer will be single phase.

Special Applications

If the transformer is to be installed outdoors, it must be suitable for outdoor application. Be on the alert for high ambient temperatures (above $40^{\circ} \mathrm{C}$), high altitude conditions (above 3300 feet), and high humidity or saltspray conditions. Refer to NEMA ST20 and ANSI C57.96 for high ambient or high altitude applications. Special transformers are normally required for such applications.
Transformers can be operated stepdown or step-up provided the rated nameplate KVA is 3 KVA or greater. Below 3 KVA, the transformers usually have compensated windings to provide rated voltage at rated load.

If these transformers are reverseconnected, the load voltage will not match the nameplate value. Depending on KVA size, the actual load voltage could be up to 15 per cent lower than expected.
When using transformers in reverse (step-up), remember that the normal primary taps will now be on the secondary. Also, with three phase delta wye models, the neutral of the 4-wire secondary winding will now be on the primary side. The neutral (XO) is not needed in this application. It should be insulated and not connected to the input source neutral if one exists. The transformer will now be the equivalent of a delta-delta connection.

Catalog Coding System

Drive Transformer Catalog Coding - See Page 15.

Phase		Primary				Secondary	
1 Phase	1	240×120	A	277	E	120/240	1
3 Phase	3	208	B	480	F	240/120 LT	1
		240	C	600	G	240	2
		480×240	D			208Y/120	3
						480	4
						480Y/277	5

Taps ©	
Description	Catalog Code
None	N
$2-5 \%$ FCBN	R
$2-5 \%$ (1 FCAN, 1 FCBN)	S
$4-2.5 \%$ (2 FCAN, 2 FCBN)	T
$2-2.5 \%$ FCBN	U
$4-2.5 \%$ FCBN	X
6-2.5\% (2 FCAN, 4 FCBN)	Y
4-3.1\% (2 FCAN, 2 FCBN)	J
2-3.5\% (1 FCAN, 1 FCBN)	K
3-5\% (1 FCAN, 2 FCBN)	M

Optional Modifications

K4 - 50\% Non-Linear Load
K13 - 100\% Non-Linear Load
K20 - 125\% Non-Linear Load
K30 - 150\% Non-Linear Load
B $-80^{\circ} \mathrm{C}$ Rise
F $-115^{\circ} \mathrm{C}$ Rise
ES - Electrostatic Shield
C - Copper Windings
LN() - Low Noise (specify dB level)
TE - Totally Enclosed Non-Ventilated
W - Wall Brackets
DS - Drip Shield (NEMA 3R)

KVA							
KVA	Catalog Code						
0.25	205	5	005	37.5	037	167	167
0.50	505	7.5	007	45	045	225	225
0.75	705	9	009	50	050	300	300
1	001	10	010	75	075	500	500
1.5	105	15	015	100	100	750	750
2	002	25	025	112.5	112	1000	1000
3	003	30	030	150	150		

(1) Actual taps may vary based on volts/turn ratio.

Encapsulated Transformers
 . 050 - 3.0 KVA Single Phase 3.0-15 KVA Three Phase

Features

- UL listed designs which comply with applicable ANSI, NEMA, IEEE standards.
- Totally enclosed, non-ventilated, heavy gauge steel enclosure.
- Core and coil completely embedded within a resin compound for quiet, low temperature operation.
- Encapsulation seals out moisture and air.
- UL listed indoor/outdoor enclosure features integral wall mounting brackets.
- Rugged design resists weather, dust, and corrosion.
- Efficient, compact, lightweight, easy to install.
- Flexible wining leads that terminate within the bottom wiring compartment.
- Large wiring compartment on the bottom with convenient knockouts.
- High quality non-aging electrical grade core steel.
- Precision wound coils.

Wiring compartment for encapsulated transformer

Ventilated Transformers 15-167 KVA Single Phase 15-1000 KVA Three Phase

Features

- UL listed designs which comply with applicable ANSI, NEMA, and IEEE standards.
- Designed for indoor installation: enclosures suitable for outdoor locations available as an option.
- Core and coils are designed with UL listed high-temperature materials rated for $220^{\circ} \mathrm{C}$; standard units feature $150^{\circ} \mathrm{C}$ winding temperature rise.
- Optional low temperature rise of $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ winding temperature rise for increased efficiency and additional overload capability.
- Rugged 12 gauge sheet steel enclosure with removable panels for access to the intemal wiring area.
- Neoprene noise dampening pads isolate the core and coil from the enclosure.
- Optional drip shields and wall brackets available on most ratings.
- High quality, non-aging electrical grade core steel.
- Precision wound coils.
- Totally enclosed Non-Ventilated designs available as an optional feature on most ratings.

Optional Accessories

Wall Mounting Brackets (3)	
1 Phase	$15-50$ KVA
3 Phase	$15-50$ KVA

Drip Shield Kits ${ }^{~} 1$ 1	
1 Phase	$15-167$ KVA
3 Phase	$15-225$ KVA (2)

(1) NEMA 3R outdoor rated transformer with installation of optional drip shield kit.
(2) Contact sales office for kits used on larger ratings.
(3) For units having standard features.

Wiring compartment for ventilated transformer

Wall M ounting Brackets

Drip Shield Kits

Steps To Select Single Phase and Three Phase Transformers

Single Phase Transformers

1. Determine the electrical supply.
a) Check the primary source (input) voltage available.
b) Check the frequency in hertz, or cycles per second. The frequency of the primary line supply, the transformer, and the load equipment must be the same.
2. Determine the electrical load.
a) The secondary voltage or load (output) voltage required.
b) Load ampere, or KVA capacity required by the load.
c) Verify the load is designed to operate on the same phase and frequency that is available.
d) Select a transformer with a KVA capacity equal to or greater then the required load.
e) Use charts, or calculate the load as follows:

1 Phase KVA $=\frac{\text { Volts } \times \text { Amps }}{1000}$
Load Amps = 1 Phase KVA $\times 1000$

Single Phase Full Load Amperes							
KVA	$\mathbf{1 2 0 V}$	$\mathbf{2 0 8 V}$	$\mathbf{2 4 0 V}$	$\mathbf{2 7 7 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$	
.25	2.0	1.2	1.0	0.9	0.5	0.4	
.50	4.2	2.4	2.1	1.8	1.0	0.8	
.75	6.3	3.6	3.1	2.7	1.6	1.3	
1	8.3	4.8	4.2	3.6	2.1	1.7	
1.5	12.5	7.2	6.2	5.4	3.1	2.5	
2	16.7	9.6	8.3	7.2	4.2	3.3	
3	25	14.4	12.5	10.8	6.2	5	
5	41	24	20.8	18.0	10.4	8.3	
7.5	62	36	31	27	15.6	12.5	
10	83	48	41	36	20.8	16.7	
15	125	72	62	54	31	25	
25	206	120	104	90	52	41	
37.5	312	180	156	135	76	62	
50	416	240	208	180	104	83	
75	625	340	312	270	156	125	
100	833	480	416	361	208	166	
167	1391	803	695	603	347	278	
250	2063	1202	1041	903	520	416	
333	2775	1601	1387	1202	695	555	
500	4167	2404	2063	1805	1042	833	

Volts
f) Determine taps to compensate for line voltage variation and temperature rise requirements.

AC Motor Full Load Running Current and Recommended Transformer Ratings (1)																
Horsepower	110-120V				220-240V ${ }^{2}$				440-480V				550-600V			
	Single Phase		Three Phase													
	Amps	KVA														
1/2	9.8	1.5	4.0	3	4.9	1.5	2.0	3	2.5	1.5	1.0	3	2.0	1.5	0.8	3
3/4	13.8	2.0	5.6	3	6.9	2.0	2.8	3	3.5	2.0	1.4	3	2.8	2.0	1.1	3
1	16.0	3.0	7.2	3	8.0	3.0	3.6	3	4.0	3.0	1.8	3	3.2	3.0	1.4	3
$11 / 2$	20.0	3.0	10.4	3	10.0	3.0	5.2	3	5.0	3.0	2.6	3	4.0	3.0	2.1	3
2	24.0	5.0	13.6	6	12.0	5.0	6.8	6	6.0	5.0	3.4	6	4.8	5.0	2.7	6
3	34.0	5.0	19.2	6	17.0	5.0	9.6	6	8.5	5.0	4.8	6	6.8	5.0	3.9	6
5	56.0	7.5	30.4	9	28.0	7.5	15.2	9	14.0	7.5	7.6	9	11.2	7.5	6.1	9
$71 / 2$	80.0	15	44.0	15	40.0	15	22.0	15	21.0	15	11.0	15	16.0	15	9.0	15
10	100.0	15	56.0	15	50.0	15	28.0	15	26.0	15	14.0	15	20.0	15	11.0	15
15	135.0	25	84.0	30	68.0	25	42.0	30	34.0	25	21.0	30	27.0	25	17.0	30
20	-	-	108.0	30	88.0	25	5.0	30	44.0	25	27.0	30	35.0	25	22.0	30
25	-	-	136.0	45	110.0	37.5	68.0	45	55.0	37.5	34.0	45	44.0	37.5	27.0	45
30	-	-	160.0	45	136.0	37.5	80.0	45	68.0	37.5	40.0	45	54.0	37.5	32.0	45
40	-	-	208.0	75	176.0	50	104.0	75	88.0	50	52.0	75	70.0	50	41.0	75
50	-	-	260.0	75	216.0	75	130.0	75	108.0	75	65.0	75	86.0	75	52.0	75
60	-	-	-	-	-	-	154.0	75	-	-	77.0	75	-	-	62.0	75
75	-	-	-	-	-	-	192.0	112.5	-	-	96.0	112.5	-	-	77.0	112.5
100	-	-	-	-	-	-	248.0	112.5	-	-	124.0	112.5	-	-	99.0	112.5

(1) Recommended KVA rating shown in chart includes aluminum of 10\% spare capacity for frequent motor starting.
(2) To obtain full-clad currents for 200 and 208 volt motors, increase corresponding 220-240 volt ratings by 15 and 10% respectively.

(1) Actual taps may vary based on volts/turn ratio.

Three Phase Transformers

To select Three Phase transformers follow the same steps as Single Phase, except use 3 phase Amps/KVA chart or calculate the load as follows:
$\begin{aligned} 3 \text { Phase KVA } & =\frac{\text { Volts } \times \text { Amps } \times 1.732}{1000} \\ \text { Load Amps } & =\frac{3 \text { Phase KVA } \times 1000}{\text { Volts } \times 1.732}\end{aligned}$

KVA	Catalog Number	Taps (1)	Temperature Rise	Insulation
208 Volts Primary, 208Y/120 Volts Secondary				
15	3B3Y015	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	3в3Y030	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	3B3Y045	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	383Y075	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	3B3Y112	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	3B3Y150	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	3B3S225	1-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	3835300	1-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	3835500	1-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

208 Volts Primary, 480Y/277 Volts Secondary

15	3B5R015	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	3B5R030	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	3B5R045	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	3B5R075	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	3B5R112	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	3B5R150	2-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	385S225	1-5\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	385S300	1-5\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	3855500		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
240 Volts Primary, 208Y/120 Volts Secondary				
15	ЗС3Y015		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	зСЗҮ0зо		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	зС3Y045	2-21/2\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	ЗСЗY075	4-21/2\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	3C3Y112		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	3C3Y150		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	3C3S225	1-5\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	$3 C 35300$	1-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	3C35500		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

240 Volts Primary, 480Y/ 277 Volts Secondary

15	3C5Y015		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	3C5Y030		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	3C5Y045	2-21/2\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	3C5Y075	4-2112\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	3 C 5 Y 112		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	3C5Y150		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	3C5S225	1-5\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	3C5S300	1-5\% FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	3C5S500		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

480 Volts Primary, 208Y/ 120 Volts Secondary

3	3F3R003	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
6	3F3R006	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
9	3F3R009	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
15	3F3R015	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
15	$3 F 3 Y 015$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	$3 F 3 Y 030$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
37.5	$3 F 3 Y 037$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	$3 F 3 Y 045$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	$3 F 3 Y 075$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	$3 F 3 Y 112$	$2-21 \frac{1}{2} \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	$3 F 3 Y 150$	$4-21 / 2 \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	$3 F 3 Y 225$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	$3 F 3 Y 300$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	$3 F 3 Y 500$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
750	$3 F 3 Y 750$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
1000	$3 F 3 Y 000$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

Three Phase Full Load Amperes						
KVA	$\mathbf{2 0 8 V}$	$\mathbf{2 4 0 V}$	$\mathbf{4 1 6 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$	
3	8.3	7.2	4.16	3.6	2.9	
6	16.6	14.4	8.32	7.2	5.8	
9	25	21.6	12.4	10.8	8.6	
15	41.7	36.1	20.8	18.0	14.4	
30	83.4	72.3	41.6	36.1	28.9	
45	124	108	62.4	54.2	43.4	
50	139	120	69.4	60.1	48.1	
75	208	180	104	90	72	
112.5	312	270	156	135	108	
150	416	360	208	180	144	
225	624	541	312	270	216	
300	832	721	416	360	288	
500	1387	1202	693	601	481	
750	2084	1806	1040	903	723	
1000	2779	2408	1388	1204	963	

KVA	Catalog Number	Taps (1)	Temperature Rise	Insulation
480 Volts Primary, 240 Volts Secondary				

3	$3 F 2 R 003$	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
6	3F2R006	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
9	3F2R009	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
15	$3 F 2 R 015$	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$

480 Volts Primary, 240 Volts Secondary with $\mathbf{1 2 0}$ Volt Lighting Tap (2)

15	3F1Y015		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	3F1Y030		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	3F1Y045		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	3F1Y075	$2-21 / 2 \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	$3 F 1 Y 112$	$4-21 / 2 \%$ FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	3F1Y150		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	3F1Y225		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	3F1Y300		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	$3 F 1 Y 500$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

480 Volts Primary, 480/277 Volts Secondary

15	3 F 5015		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	3 F Y030		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	$3 \mathrm{F5Y045}$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	3 F 5075		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	3 F Y112	2-21/2\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	3F5Y150	4-21/2\% FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	3F5Y225		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	3 F 5 Y 300		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	3F5Y500		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

600 Volts Primary, 208Y/ 120 Volts Secondary

3	3G3R003	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
6	$3 G 3006$	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
9	3 G3RR009	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
15	$3 G 3 R 015$	$2-5 \%$ FCBN	$115^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
30	$3 G 3 Y 030$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	$3 G 3 Y 045$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
75	$3 G 3 Y 075$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
112.5	$33 G Y 112$	$2-21 / 2 \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
150	$3 G 3 Y 150$	$4-21 / 2 \%$ FCBN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	$3 G 3 Y 225$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	$3 G 3 Y 300$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
500	$3 G 3 Y 500$		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

[^0]
Electrostatic Shielded

Electrical noise and transients on power lines can be created by a number of different sources. Some examples are: lightning strikes, switching or motor loads or capacitors, and SCR circuits. Electrical noise can be classified as either "common" or "transverse" mode. Common-mode noise is the type which appears between the line conductor and ground, whereas trans-verse-mode noise appears between two line conductors. These types of noise have been around since electricity was first used. However, they were of little concern where traditional electromechanical devices were used.

But today, electronic components and systems are being used increasingly in many types of equipment destined for commercial and industrial installations. Electronic circuitry can be sensitive to transient noise and these transients have to be controlled.
Transient noise is usually measured in decibels (dB). Decibel is a unit of measurement, in this context, used to express the ratio between the input transient voltage and the output transient voltage.
Noise Attenuation $(\mathrm{dB})=$

$$
20 \log _{10} \frac{V \text { in }}{V \text { out }}
$$

The formula used in measurement of transient noise attenuation is logarithmic and hence a change of 40 dB to 60 dB is actually a ten fold reduction in electrical noise.
The following table outlines some common attenuating ratios and their decibel equivalents.

Voltage Ratio \mathbf{V} in $\mathbf{~ V ~ o u t ~}$	Transient Noise Attenuation (dB) (1)
$5: 1$	14
$10: 1$	20
$100: 1$	40
$1,00: 1$	60
$10,000: 1$	80
$100,000: 1$	100
$1,000,000: 1$	120

(1) Common mode.

Single Phase - Electrostatic Shielded (1)

KVA	$\begin{gathered} 208 \\ 120 / 240 \end{gathered}$	$\begin{gathered} 277 \\ 120 / 240 \end{gathered}$	$\begin{gathered} \hline 480 \\ 120 / 240 \end{gathered}$	$\begin{aligned} & \hline 240 \times 480 \\ & 120 / 240 \end{aligned}$	$\begin{gathered} 600 \\ 120 / 240 \end{gathered}$
3	1B1N003ES	1E1R003ES	1F1R003ES	1D1N003ES	1G1R003ES
5	1B1N005ES	1E1R005ES	1F1R005ES	1D1N005ES	1G1R005ES
7.5	1B1N007ES	1E1R007ES	1F1R007ES	1D1N007ES	1G1R007ES
10	1B1N010ES	1E1R010ES	1F1R010ES	1D1N010ES	1G1R010ES
15	1B1N015ES	1E1R015ES	1F1R015ES	1D1N015ES	1G1R015ES
25				1D1Y025ES	1G1U025ES
37.5				1DIY037ES	1G1U037ES
50				1D1Y050ES	1G1U050ES
75	-	-	-	1DIY075ES	1G1U075ES
100				1D1Y100ES	1G1U100ES
167				1D1Y167ES	1G1U167ES

Three Phase - Electrostatic Shielded (1)

$\mathbf{K V A}$	$\mathbf{2 0 8 \Delta}$ $\mathbf{2 0 8 Y / 1 2 0}$	$\mathbf{2 0 8 \Delta}$ $\mathbf{4 8 0 Y / 2 7 7}$	$\mathbf{4 8 0 \Delta}$ $\mathbf{2 0 8 Y / 1 2 0}$	$\mathbf{4 8 0 \Delta}$ $\mathbf{2 4 0 \Delta}$	$\mathbf{4 8 0 \Delta}$			
3			380Y/277			$	$	3F3R003ES
:---:								
6								

(1) Refer to page 5 for other optional modifications.

An optional feature for isolation transformers is to include an electrostatic shield between the primary and secondary windings. Shielded isolation transformers do not provide voltage regulation, but they do reduce electrical noise by attenuating spikes and transients to ground. The amount of transient noise attenuation depends on the transformer design, but a typical or "standard" shielded isolation transformer will provide about 60 dB attenuation ($10 \mathrm{KHz}-10 \mathrm{MHz}$). Shielded isolation transformers are typically used where load equipment is sensitive to transients or to suppress transients from back-feeding onto the feeder circuits.

Unshielded Transformer

Shielded Transformer

What Are Non-Linear Loads?

When a sinusoidal voltage is applied to a "linear load," the resultant current waveform takes on the shape of a sine wave as well. Typical linear loads are resistive heating and induction motors.
In contrast, non-linear load either:

- Draws current during only part of the cycle and acts as an open circuit for the balance of the cycle, or
- Changes the impedance during the cycle, hence the resultant waveform is distorted and no longer conforms to a pure sine wave shape.
In recent years, the use of electronic equipment proliferated in both offices and industrial plants. These electronic devices are powered by switching power supplies or some type of rectifier circuit. Examples of these devices used in offices are: computers, fax machines, copiers, printers, cash registers, UPS and solid-state ballasts, etc. In industrial plants, one will find other electronic devices like variable speed drives, HID lighting, solid-state starters and solid-state instruments, etc. They all contribute to the distortion of the current waveform and the generation of harmonics. As the use of electronic equipment increases and it makes up a significant portion of the electrical load, many concerns are raised about its impact on the electrical supply system.

What Are Harmonics?

As defined by ANSI/IEEE Std. 519-1981, harmonic components are represented by a periodic wave or quantity having a frequency that is an integral multiple of the fundamental frequency.
Harmonics superimpose themselves on the fundamentals waveform, distorting it and changing its magnitude.
The percent of odd harmonics (3rd, 5th, 7th,...,25th,...) present in the load can affect the transformer, and this condition is called a "Non-Linear Load" or "Non-Sinusoidal Load."
The total amount of harmonics will determine the percentage of non-linear load, which can be specified with the appropriate K-Factor rating.

Voltage or Current Waveform for Linear Loads (Sine Wave)

Typical Current Waveform of Switching Power Supply

A Non-Linear Current and lts Fundamental, Plus 3rd and 5th Harmonic Components

Harmonics For 60 Hz Systems

In a 60 Hz power system, the fundamental and harmonic frequencies are outlined in the table below.

Fundamental	60 Hz
2nd Harmonic	120 Hz
3rd Harmonic*	170 Hz
4th Harmonic	240 Hz
5th Harmonic	300 Hz
6th Harmonic*	360 Hz
7th Harmonic	420 Hz
8th Harmonic	480 Hz
9th Harmonic*	540 Hz

Effect Of Harmonics On Transformers

Non-sinusoidal current generates extra losses and heating of transformer coils
thus reducing efficiency and shortening the life expectancy of the transformer.

Coil losses increase with the higher harmonic frequencies due to higher eddy current loss in the conductors.
Furthermore, on a balance linear power system, the phase currents are 120 degrees out of phase and they offset one another in the neutral conductor. But with the "Triplen" harmonics (multiple of 3) the phase current are in phase and they are additive in this neutral conductor. This may cause installations with non-linear load to be double either the size or the number of neutral conductors.

M otor Drive Isolation Transformers

With today's technological advances in solid-state power control devices, AC and DC variable speed motor drives have become more popular in many industrial applications. Siemens Drive Isolation Transformers are designed to meet the rugged demands of $A C$ and DC variable speed drives and to provide circuit isolation from SCR's. They also provide the specific horsepower rating and voltage change to match the motor
drive system. The cores are designed with reduced flux density to meet the inrush characteristics of drive applications. Windings are braced to withstand the mechanical stress and overload capacity needed for motor drive and SCR duty cycles. The separate primary and secondary windings provide electrical isolation between the incoming line and the load which minimizes line disturbances, feedback, and transients
caused by SCR firing. When needed, an optional electrostatic shield can be provided between the primary and secondary windings to provide additional noise attenuation. Also available as an option is a themal switch with 1-NC contact installed in each coil.

KVA	Motor H.P.	Catalog Number	Standard Taps	Temperature Rise	Insulation	Mounting Type	Drip Shield Required
7.5	3 \& 5	DT()007	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor \& Wall	Yes
11	7.5	DT()011	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220{ }^{\circ} \mathrm{C}$	Floor \& Wall	Yes
15	10	DT()015	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220{ }^{\circ} \mathrm{C}$	Floor \& Wall	Yes
20	15	DT()020	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor \& Wall	Yes
27	20	DT()027	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor \& Wall	Yes
34	25	DT()034	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220{ }^{\circ} \mathrm{C}$	Floor \& Wall	Yes
40	30	DT()040	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor \& Wall	Yes
51	40	DT()051	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220{ }^{\circ} \mathrm{C}$	Floor \& Wall	Yes
63	50	DT()063	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
75	60	DT()075	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
93	75	DT()093	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
118	100	DT()118	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
145	125	DT()145	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
175	150	DT()175	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
220	200	DT()220	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
275	250	DT()275	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
330	300	DT()330	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
440	400	DT()440	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
550	500	DT()550	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes
660	600	DT()660	1-5\% FCAN/BN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	Floor	Yes

DT()Code	Primary Volts	Secondary Volts
22	230 Delta	$230 \mathrm{Y} / 133$
24	230 Delta	$460 \mathrm{Y} / 266$
42	460 Delta	$230 \mathrm{Y} / 133$
44	460 Delta	$460 \mathrm{Y} / 266$
52	575 Delta	$230 \mathrm{Y} / 133$
54	575 Delta	$460 \mathrm{Y} / 266$

Suffix Code	Optional Modification
ES	Electrostatic Shield
W	Wall Mtg. Brackets - 7.5 thru 51 KVA
DS	Drip Shields -7.5 thru 330 KVA
TS	Thermal Switches

(1) Standard taps varies with KVA size based on the design volts/turn ratio.
(2) Refer to page 8 for additional information on horsepower. Ampere, and KVA ratings.
(3) For outdoor application.

K-Factor

Measurement of Harmonics

For existing installations, the extent of the harmonics can be measured with appropriate instruments like "Power Harmonic Analyzer." This service is offered by many consulting service organizations. For new construction, such information may not be obtainable, hence it is best to assume the "worst case" condition based on experience with the type and mix of loads.

Sizing Transformers for Non-Linear Loads

ANSI/IEEE C57.110-1986 has a procedure on de-rating standard distribution

K-Factors

K-Factor is a ratio between the additional losses due to harmonics and the eddy losses at 60 Hz . It is used to specify transformers for non-linear loads. Note that K-Factor transformers do not eliminate harmonic distortion, they withstand nonlinear load condition without overheating.

Type	Linear Load Load	Non-Linear Load	K-Factor Value
K-4	100%	50%	4.0
K-13	100%	100%	13.0
K-20	100%	125%	20.0
K-30	100%	150%	30.0

50\% Non-Linear Load (K4 Rating)

Harmonic (h)	Current (I)	$\mathbf{I}(\mathbf{p u})$	$\mathbf{I}^{(\mathbf{p u})^{2} \mathbf{h}^{\mathbf{2}}}$
1	100.000%	1.000	1.000
3	16.667%	0.167	0.250
5	10.000%	0.100	0.250
7	7.143%	0.071	0.250
9	5.556%	0.056	0.250
11	4.545%	0.045	0.250
13	3.846%	0.038	0.250
15	3.333%	0.033	0.250
17	2.941%	0.029	0.250
19	2.632%	0.026	0.250
21	2.381%	0.024	0.250
23	2.174%	0.022	0.250
25	2.000%	0.020	0.250

100\% Non-Linear Load (K13 Rating)

K-Factor $\sum(1 \mathrm{~h}(\mathrm{pu})-\mathrm{h})=4.0$

Harmonic (h)	Current (l)	$\mathbf{I}(\mathbf{p u})$	$\mathbf{I}^{(\mathbf{p u})^{2} \mathbf{h}^{\mathbf{2}}}$
1	100.000%	1.000	1.000
3	33.333%	0.333	1.000
5	20.000%	0.200	1.000
7	14.286%	0.143	1.000
9	11.111%	0.111	1.000
11	9.091%	0.091	1.000
13	7.692%	0.077	1.000
15	6.667%	0.067	1.000
17	5.882%	0.059	1.000
19	5.263%	0.053	1.000
21	4.762%	0.048	1.000
23	4.348%	0.043	1.000
25	4.000%	0.040	1.000

K-Factor $\sum(1 \mathrm{~h}(\mathrm{pu})-\mathrm{h})=13.0$
125\% Non-Linear Load (K20 Rating)

Harmonic (h)	Current (I)	$\mathbf{I}(\mathbf{p u})$	$\mathbf{I}^{(\mathbf{p u})^{2} \mathbf{h}^{\mathbf{2}}}$
1	100.000%	1.000	1.000
3	41.667%	0.417	1.563
5	25.000%	0.250	1.563
7	17.857%	0.179	1.563
9	13.889%	0.139	1.563
11	11.364%	0.114	1.563
13	9.651%	0.096	1.563
15	8.333%	0.083	1.563
17	7.353%	0.074	1.563
19	6.579%	0.066	1.563
21	5.952%	0.060	1.563
23	5.435%	0.054	1.563
25	5.000%	0.050	1.563

150\% Non-Linear Load (K30 Rating)

Harmonic (h)	Current (I)	$\mathbf{I}(\mathbf{p u})$	$\mathbf{I}^{(\mathbf{p u})^{\mathbf{2}} \mathbf{h}^{\mathbf{2}}}$
1	100.000%	1.000	1.000
3	50.000%	0.500	2.250
5	30.000%	0.300	2.250
7	21.429%	0.214	2.250
9	16.667%	0.167	2.250
11	13.636%	0.136	2.250
13	11.538%	0.315	2.250
15	10.000%	0.100	2.250
17	8.824%	0.088	2.250
19	7.895%	0.079	2.250
21	7.143%	0.071	2.250
23	6.522%	0.065	2.250
25	6.000%	0.060	2.250

K-Factor $\sum(1 \mathrm{~h}(\mathrm{pu})-\mathrm{h})=19.756$
K-Factor $\sum(1 \mathrm{~h}(\mathrm{pu})-\mathrm{h})=28.0$
Note: In the examples above the amount of non-linear load specified, the percentage of fundamental, and the percentage of harmonic factor are arbitrary values; actual values may vary. Consult sales office for your specific application with current values for each harmonic.

K-Factor

K-Factor 4 with Electrostatic Shield (1)

KVA	$\begin{gathered} 480 \Delta \\ 208 Y / 120 \\ \hline \end{gathered}$	Taps	Temp. Rise	Insulation
15	3F3Y015K4	$\begin{aligned} & 2-2^{1} 12 \% \text { FCAN } \\ & 4-2^{1 ⁄ 2} \% \text { FCBN } \end{aligned}$	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	3F3Y030K4			
45	3F3Y045K4			
75	3F3Y075K4			
112.5	3F3Y112K4			
150	3F3Y150K4		$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	3F3Y225K4	2-21/2\% FCAN		
300	3F3Y300K4	4-21⁄2\% FCBN		
500	3F3Y500K4			

K-Factor $\mathbf{2 0}$ with Electrostatic Shield (1)

KVA	$\begin{gathered} 480 \Delta \\ 208 Y / 120 \\ \hline \end{gathered}$	Taps	Temp. Rise	Insulation
15	3F3Y015K20	$\begin{aligned} & 2-2 \frac{1}{2} \% \text { FCAN } \\ & 4-21 / 2 \% \text { FCBN } \end{aligned}$	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
30	3F3Y030K20			
45	3F3Y045K20			
75	3F3Y075K20			
112.5	3F3Y112K20			
150	3F3Y150K20	$\begin{aligned} & 2-2^{1 ⁄ 2} \% \text { FCAN } \\ & 4-2^{1 ⁄ 2} \% \text { FCBN } \end{aligned}$	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
225	3F3Y225K20			
300	3F3Y300K20			
500	3F3Y500K20			

(1) Refer to page 5 for other optional modifications.

Standard Features

- Designed to ANSI and NEMA Standards
- UL K-Factor listed per UL 1561
- K-Factor rating designed to IEEE C57.110
- Aluminum wound coils
- $150^{\circ} \mathrm{C}$ Rise, $220^{\circ} \mathrm{C}$ insulation
- Core, conductors designed for Harmonics and Eddy currents
- 200\% neutral bar ($2 x$ phase current)
- Electrostatic shield to attenuate line transients
- NEMA 1 enclosure

K-Factor 13 with Electrostatic Shield (1)

KVA	$\mathbf{4 8 0 \Delta}$ $\mathbf{2 0 8 Y} / \mathbf{1 2 0}$	Taps	Temp. Rise	Insulation
15	$3 F 3 Y 015 K 13$			
30	$3 F 3 Y 030 K 13$	$2-2 \frac{1}{2} \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	$3 F 3 Y 045 K 13$	$4-2 \frac{1}{2} \%$ FCBN		
75	$3 F 3 Y 075 K 13$			
112.5	$3 F 3 Y 112 \mathrm{~K} 13$			
150	$3 F 3 Y 150 K 13$			
225	$3 F 3 Y 225 K 13$	$2-21 / 2 \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	$3 F 3 Y 300 K 13$	$4-21 / 2 \%$ FCBN		
500	$3 F 3 Y 500 K 13$			

K-Factor 30 with Electrostatic Shield (1)

KVA	$\mathbf{4 8 0 \Delta}$ $\mathbf{2 0 8 Y} / \mathbf{1 2 0}$	Taps	Temp. Rise	Insulation
15	$3 F 3 Y 015 K 30$			
30	$3 F 3 Y Y 30 K 30$	$2-2 \frac{1}{2} \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
45	$3 F 3 Y Y 45 K 30$	$4-2 \frac{1}{2} \%$ FCBN		
75	$333 Y 75 K 30$			
112.5	$3 F 3 Y 112 K 30$			
150	$3 F 3 Y 150 K 30$		20°	
225	$3 F 3 Y 225 K 30$	$2-2 \frac{1}{2} \%$ FCAN	$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
300	$3 F 3 Y 300 K 30$	$4-2 \frac{1}{2} \%$ FCBN		
500	$3 F 3 Y 500 K 30$			

Buck-Boost Transformers

Application

The Buck-Boost Transformer has four separate windings, two-windings in the primary and two-w indings in the secondary. The unit is designed for use as an insulating fransformer or as an autotransformer. As an autotransformer the unit can be corrected to Buck (decrease) or Boost (increase) a supply voltage. When connected in either the Buck or Boost mode, the unit is no longer an insulating transformer but is an autotransformer.

Autotransformers are more economical and physically smaller then equivalent two-winding transformers and are designed to carry the same function as two-winding transformers, with the exception of isolating two circuits. Since autotransformers may transmit line disturbances directly, they may be prohibited in some areas by local building codes. Before applying them, care should be taken to assure that they are acceptable to local code.
Note: Autotransformers are not used in closed delta connections as they introduce into the circuit a phase shift which makes them uneconomical.
As insulating transformers these units can accommodate a high voltage of 120,240 , or 480 volts. For units with two 12 volt secondaries, two 16 volt secondaries, or two 24 volt secondaries, the output can be wired for either secondary voltage, or for 3-wire secondary. The unit is rated (KVA) as any conventional transformer.

Operation

Electrical and electronic equipment is designed to operate on a standard supply voltage. When the supply voltage is constantly too high or too low (usually greater than $\pm 5 \%$) the equipment fails to operate at maximum efficiency. A Buck-Boost transformer is a simple and economical means of correcting this off-standard voltage up to $\pm 20 \%$. A Buck-Boost Transformer will NOT, however, stabilize a fluctuating voltage.

Buck-Boost transformers are suitable for use as a three phase autotransformer bank in either direction to supply 3 -wire loads. They are also suitable for

use in a three-phase autotransformer bank which provides a neutral retum for unbalanced current. They are NOT suitable for use in a three phase
autotransformer bank to supply a 4-wire unbalanced load when the source is a 3-wire circuit.

120×240 Pri. - 12/24 Sec.		120×240 Pri. - 16/32 Sec.		240×480 Pri. - $24 / 48$ Sec.	
KVA	Catalog Number	KVA	Catalog Number	KVA	Catalog Number
. 050	050BB1224	. 050	050BB1632	. 050	050BB2448
. 100	100BB1224	. 100	100BB1632	. 100	100BB2448
. 150	150BB1224	. 150	150BB1632	. 150	150BB2448
. 250	205BB1224	. 250	205BB1632	. 250	205BB2448
. 500	505BB1224	. 500	505BB1632	. 500	505BB2448
. 750	705BB1224	. 750	705BB1632	. 750	705BB2448
1.00	1 BB 1224	1.00	1 BB1632	1.00	1 BB 2448
1.50	105BB1224	1.50	$105 B B 1632$	1.50	$105 B B 2448$
2.00	2BB1224	2.00	2 2B1632	2.00	2 BB 2448
3.00	3 BB1224	3.00	3BB1632	3.00	3BB2448
5.00	5BB1224	5.00	5BB1632	5.00	5BB2448

Typical Three Phase Buck-Boost Autotransformer Installation

Use quantity of Buck-Boost Transformer(s) indicated on chart for connection to be made. Quantity required may vary from quantity shown in this illustration. CAUTION: Refer to National Electrical Code Article 373-4 for determining wire bending space.

How to Select the Proper Transformer

To select the proper Transformer for Buck-Boost applications, determine:

1. Input line voltage - The voltage that you want to buck (decrease) or boost (increase). This can be found by measuring the supply line voltage with a voltmeter.
2. Load voltage - The voltage at which your equipment is designed to operate. This is listed on the nameplate of the load equipment.
3. Load KVA or Load Amps - You do not need to know both - one or the either is sufficient for selection purposes.This information usually can be found on the nameplate of the equipment that you want to operate.
4. Number of phases - Single or three phase line and load should match because a transformer is not capable of converting single to three phase. It is however, a common application to make a single phase transformer connection from a three phase supply by use of one leg of the three phase supply circuit. Care must always be taken not to overload the leg of the three phase supply. This is particularly true in a Buck-Boost application because the supply must provide for the load KVA, not just the name plate rating of the Buck-Boost transformer.
5. Frequency - The supply line frequency must be the same as the frequency of the equipment to be operated - either 50 or 60 cycles.

How to Use Selection Charts

1. Choose the selection table with the correct number of phases for single or three phase applications.
2. Line/Load voltage combinations are listed across the top of the selection table. Select a line/load voltage combination which comes closest to matching your application.
3. Follow the selected column down until you find either the load KVA or load amps of your application. If you do not find the exact value, go on the next highest rating.
4. Now follow the column across the table to the far left-hand side to find the catalog number and KVA of the transformer you need.
5. Follow the column of your line/load voltage to the bottom to find the connection diagram for this application. NOTE: Connection diagrams show low voltage and high voltage connection terminals. Either can be input or output depending on Buck or Boost application.
6. In the case of three phase loads either two or three single phase transformers are required as indicated in the "quantity required" line at the bottom of the table. The selection is dependent on whether a Wye connected bank of three transformers with a neutral is required or whether an open Delta connected bank of two transformers for a Delta connected load will be suitable.
7. For line/load voltage not listed on the selection tables, use the pair listed on the table that is slightly above your application for reference. Then apply the first formula at the bottom of the table to determine "new" output voltage. The new KVA rating can be found using the second formula.

Buck-Boost Transformers

120×240 Volts Primary - 12/24 Volts Secondary - 60Hz - No Taps - Wall Mounted

Single Phase - Table 1			Boosting								Bucking					
Catalog Number	Line Voltage (Available)		95	100	105	109	189	208	215	220	125	132	229	245	250	252
Insulating Transformer Rating	Load (Outp	Voltage ut)	114	120	115	120	208	229	237	242	113	120	208	222	227	240
$\begin{aligned} & \text { 050BB2448 } \\ & .050 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .24 \\ 2.08 \end{array}$	$\begin{array}{r} .25 \\ 2.08 \end{array}$	$\begin{array}{r} .50 \\ 4.17 \end{array}$	$\begin{array}{r} .50 \\ 4.17 \end{array}$	$\begin{array}{r} .43 \\ 2.08 \end{array}$	$\begin{array}{r} .48 \\ 2.08 \end{array}$	$\begin{array}{r} .49 \\ 2.08 \end{array}$	$\begin{array}{r} .50 \\ 2.08 \end{array}$	$\begin{array}{r} .52 \\ 4.59 \end{array}$	$\begin{array}{r} .55 \\ 4.59 \end{array}$	$\begin{array}{r} .48 \\ 2.29 \end{array}$	$\begin{array}{r} .51 \\ 2.29 \end{array}$	$\begin{array}{r} .52 \\ 2.29 \end{array}$	$\begin{aligned} & 1.05 \\ & 4.38 \end{aligned}$
$\begin{aligned} & \text { 100BB2448 } \\ & .100 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .48 \\ 4.17 \end{array}$	$\begin{array}{r} .50 \\ 4.17 \end{array}$	$\begin{array}{r} .96 \\ 8.33 \end{array}$	$\begin{aligned} & 1.00 \\ & 8.33 \end{aligned}$	$\begin{array}{r} .87 \\ 4.17 \end{array}$	$\begin{array}{r} .95 \\ 4.17 \end{array}$	$\begin{array}{r} .99 \\ 4.17 \end{array}$	$\begin{aligned} & 1.01 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 9.16 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 9.16 \end{aligned}$	$\begin{array}{r} .95 \\ 4.58 \end{array}$	$\begin{aligned} & 1.02 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 2.10 \\ & 8.75 \end{aligned}$
$\begin{aligned} & \text { 150BB2448 } \\ & .150 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .72 \\ 6.25 \end{array}$	$\begin{array}{r} .75 \\ 6.25 \end{array}$	$\begin{array}{r} 1.44 \\ 12.50 \end{array}$	$\begin{array}{r} 1.50 \\ 12.50 \end{array}$	$\begin{aligned} & 1.30 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 6.25 \end{aligned}$	$\begin{array}{r} 1.55 \\ 13.75 \end{array}$	$\begin{array}{r} 1.65 \\ 13.75 \end{array}$	$\begin{aligned} & 1.43 \\ & 6.88 \end{aligned}$	1.53 6.88	$\begin{aligned} & 1.56 \\ & 6.88 \end{aligned}$	$\begin{array}{r} 3.15 \\ 13.13 \end{array}$
$\begin{aligned} & \text { 205BB2448 } \\ & .250 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 1.19 \\ 10.42 \end{array}$	$\begin{array}{r} 1.25 \\ 10.42 \end{array}$	$\begin{array}{r} 2.40 \\ 20.83 \end{array}$	$\begin{array}{r} 2.50 \\ 20.83 \end{array}$	$\begin{array}{r} 2.17 \\ 10.42 \end{array}$	$\begin{array}{r} 2.38 \\ 10.42 \end{array}$	$\begin{array}{r} 2.47 \\ 10.42 \end{array}$	$\begin{array}{r} 2.52 \\ 10.42 \end{array}$	$\begin{array}{r} 2.60 \\ 22.92 \end{array}$	$\begin{array}{r} 2.75 \\ 22.92 \end{array}$	$\begin{array}{r} 2.38 \\ 11.46 \end{array}$	$\begin{array}{r} 2.54 \\ 11.46 \end{array}$	$\begin{array}{r} 2.60 \\ 11.46 \end{array}$	$\begin{array}{r} 5.25 \\ 21.88 \end{array}$
$\begin{aligned} & \text { 505BB2448 } \\ & .500 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 2.37 \\ 20.83 \end{array}$	$\begin{array}{r} 2.50 \\ 20.83 \end{array}$	$\begin{array}{r} 4.80 \\ 41.67 \end{array}$	$\begin{array}{r} 5.00 \\ 41.67 \end{array}$	$\begin{array}{r} 4.33 \\ 20.83 \end{array}$	$\begin{array}{r} \hline 4.77 \\ 20.83 \end{array}$	$\begin{array}{r} 4.94 \\ 20.83 \end{array}$	$\begin{array}{r} 5.04 \\ 20.83 \end{array}$	$\begin{array}{r} 5.18 \\ 45.83 \end{array}$	$\begin{array}{r} 5.50 \\ 45.83 \end{array}$	$\begin{array}{r} 4.77 \\ 22.92 \end{array}$	$\begin{array}{r} 5.09 \\ 22.92 \end{array}$	$\begin{array}{r} 5.20 \\ 22.92 \end{array}$	$\begin{aligned} & 10.50 \\ & 43.75 \end{aligned}$
$\begin{aligned} & \text { 705BB2448 } \\ & .750 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 3.56 \\ 31.25 \end{array}$	$\begin{array}{r} 3.75 \\ 31.25 \end{array}$	$\begin{array}{r} 7.19 \\ 62.50 \end{array}$	$\begin{array}{r} 7.50 \\ 62.50 \end{array}$	$\begin{array}{r} 6.50 \\ 31.25 \end{array}$	$\begin{array}{r} 7.15 \\ 31.25 \end{array}$	$\begin{array}{r} 7.41 \\ 31.25 \end{array}$	$\begin{array}{r} 7.56 \\ 31.25 \end{array}$	$\begin{array}{r} 7.77 \\ 68.75 \end{array}$	$\begin{array}{r} 8.25 \\ 68.75 \end{array}$	$\begin{array}{r} 7.15 \\ 34.38 \end{array}$	$\begin{array}{r} 7.63 \\ 34.38 \end{array}$	$\begin{array}{r} 7.80 \\ 34.38 \end{array}$	$\begin{aligned} & 15.75 \\ & 65.63 \end{aligned}$
$\begin{aligned} & 1 B B 2448 \\ & 1.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 4.75 \\ 41.67 \end{array}$	$\begin{array}{r} 5.00 \\ 41.67 \end{array}$	$\begin{array}{r} 9.58 \\ 83.33 \end{array}$	$\begin{aligned} & 10.00 \\ & 83.33 \end{aligned}$	$\begin{array}{r} 8.67 \\ 41.67 \end{array}$	$\begin{array}{r} 9.53 \\ 41.67 \end{array}$	$\begin{array}{r} 9.88 \\ 41.67 \end{array}$	$\begin{aligned} & 10.08 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 10.36 \\ & 91.66 \end{aligned}$	$\begin{aligned} & 11.00 \\ & 91.66 \end{aligned}$	$\begin{array}{r} 9.53 \\ 45.83 \end{array}$	$\begin{aligned} & 10.17 \\ & 45.83 \end{aligned}$	$\begin{aligned} & 10.40 \\ & 45.83 \end{aligned}$	$\begin{aligned} & \hline 21.00 \\ & 87.50 \end{aligned}$
$\begin{aligned} & \text { 105BB2448 } \\ & 1.50 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 7.13 \\ 62.50 \end{array}$	$\begin{array}{r} 7.50 \\ 62.50 \end{array}$	$\begin{array}{r} 14.38 \\ 125.00 \end{array}$	$\begin{array}{r} 15.00 \\ 125.00 \end{array}$	$\begin{aligned} & 13.00 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 14.81 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 15.13 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 15.54 \\ 137.50 \end{array}$	$\begin{array}{r} 16.50 \\ 137.50 \end{array}$	$\begin{aligned} & 14.30 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 15.26 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 15.61 \\ & 68.75 \end{aligned}$	$\begin{array}{r} 31.50 \\ 131.25 \end{array}$
$\begin{aligned} & \text { 2BB2448 } \\ & \text { 2.00 KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 9.50 \\ 83.33 \end{array}$	$\begin{aligned} & 10.00 \\ & 83.33 \end{aligned}$	$\begin{array}{r} 19.17 \\ 166.66 \end{array}$	$\begin{array}{r} 20.00 \\ 166.66 \end{array}$	$\begin{aligned} & 17.33 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 19.07 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 19.75 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 20.17 \\ & 83.33 \end{aligned}$	$\begin{array}{r} 20.72 \\ 183.33 \end{array}$	$\begin{array}{r} 22.00 \\ 183.33 \end{array}$	$\begin{aligned} & 19.07 \\ & 91.66 \end{aligned}$	$\begin{aligned} & 20.35 \\ & 91.66 \end{aligned}$	$\begin{aligned} & \hline 20.81 \\ & 91.66 \end{aligned}$	$\begin{array}{\|r\|} \hline 42.00 \\ 175.00 \end{array}$
$\begin{aligned} & 3 B B 2448 \\ & 3.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 14.25 \\ 125.00 \end{array}$	$\begin{array}{r} 15.00 \\ 125.00 \end{array}$	28.75 250.00	$\begin{array}{r} 30.00 \\ 250.00 \end{array}$	$\begin{array}{r} 26.00 \\ 125.00 \end{array}$	$\begin{array}{r} 28.60 \\ 125.00 \end{array}$	$\begin{array}{r} 29.63 \\ 125.00 \end{array}$	$\begin{array}{r} 30.25 \\ 125.00 \end{array}$	$\begin{array}{r} 31.08 \\ 275.00 \end{array}$	$\begin{array}{r} 33.00 \\ 275.00 \end{array}$	$\begin{array}{r} 28.60 \\ 137.50 \end{array}$	$\begin{array}{r} 30.53 \\ 137.50 \end{array}$	$\begin{array}{r} 31.21 \\ 137.50 \end{array}$	$\begin{array}{r} 63.00 \\ 262.50 \end{array}$
$\begin{aligned} & \text { 5BB2448 } \\ & 5.00 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 23.75 \\ 208.33 \end{array}$	$\begin{array}{r} 25.00 \\ 208.33 \end{array}$	$\begin{array}{r} 47.92 \\ 416.66 \end{array}$	$\begin{array}{r} 50.00 \\ 416.66 \end{array}$	$\begin{array}{r} 43.33 \\ 208.33 \end{array}$	$\begin{array}{r} 47.67 \\ 208.33 \end{array}$	$\begin{array}{r} 49.37 \\ 208.33 \end{array}$	$\begin{array}{r} 50.42 \\ 208.33 \end{array}$	$\begin{array}{r} 51.79 \\ 458.33 \end{array}$	$\begin{array}{r} 55.00 \\ 458.33 \end{array}$	$\begin{array}{r} 47.67 \\ 229.17 \end{array}$	$\begin{array}{r} 50.88 \\ 229.17 \end{array}$	$\begin{array}{r} 52.02 \\ 229.17 \end{array}$	$\begin{aligned} & 105.00 \\ & 437.50 \end{aligned}$
Connection Diagram			B	B	A	A	D	D	D	D	A	A	D	D	D	C

Three Phase - Table 2			Boosting								Bucking					
Catalog Number	Line Voltage (Available)		$\begin{gathered} 189 Y \\ 109 \end{gathered}$	$\begin{gathered} 195 Y \\ 113 \end{gathered}$	$\begin{gathered} 200 Y \\ 115 \end{gathered}$	$\begin{gathered} 208 Y \\ 120 \end{gathered}$	$\begin{gathered} \text { 41GY } \\ 240 \end{gathered}$	$\begin{gathered} 41 G Y \\ 240 \end{gathered}$	189	208	220	218	229	250	255	264
Insulating Transformer Rating	Load Voltage (Output)		208	234	240	229	457	436	208	229	242	208	208	227	232	240
$\begin{aligned} & \text { 050BB2448 } \\ & .050 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 1.50 \\ & 4.17 \end{aligned}$	$\begin{array}{r} .84 \\ 2.08 \end{array}$	$\begin{array}{r} .86 \\ 2.08 \end{array}$	$\begin{aligned} & 1.65 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 2.08 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 4.17 \end{aligned}$	$\begin{array}{r} .75 \\ 2.08 \end{array}$	$\begin{array}{r} .83 \\ 2.08 \end{array}$	$\begin{array}{r} .87 \\ 2.08 \end{array}$	$\begin{aligned} & 1.58 \\ & 4.39 \end{aligned}$	$\begin{array}{r} .83 \\ 2.29 \end{array}$	$\begin{array}{r} .90 \\ 2.29 \end{array}$	$\begin{array}{r} .92 \\ 2.29 \end{array}$	$\begin{array}{r} .95 \\ 2.29 \end{array}$
$\begin{aligned} & \text { 100BB2448 } \\ & .100 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 3.00 \\ & 8.33 \end{aligned}$	$\begin{aligned} & 1.69 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 1.73 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 8.33 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 6.29 \\ & 8.33 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 8.75 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 1.84 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 4.58 \end{aligned}$
$\begin{aligned} & \text { 150BB2448 } \\ & .150 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 4.50 \\ 12.50 \end{array}$	$\begin{aligned} & 2.54 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 6.25 \end{aligned}$	$\begin{array}{r} 4.96 \\ 12.50 \end{array}$	$\begin{aligned} & 4.96 \\ & 6.25 \end{aligned}$	$\begin{array}{r} 9.44 \\ 12.50 \end{array}$	$\begin{aligned} & 2.26 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 2.62 \\ & 6.25 \end{aligned}$	$\begin{array}{r} 4.73 \\ 13.13 \end{array}$	$\begin{aligned} & 2.48 \\ & 6.88 \end{aligned}$	$\begin{aligned} & 2.71 \\ & 6.88 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 6.88 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 6.88 \end{aligned}$
$\begin{aligned} & \text { 205BB2448 } \\ & .250 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 7.50 \\ 20.83 \end{array}$	$\begin{array}{r} 4.22 \\ 10.42 \end{array}$	$\begin{array}{r} 4.33 \\ 10.42 \end{array}$	$\begin{array}{r} 8.30 \\ 20.83 \end{array}$	$\begin{array}{r} 8.25 \\ 10.42 \end{array}$	$\begin{aligned} & 15.75 \\ & 20.83 \end{aligned}$	$\begin{array}{r} 3.75 \\ 10.42 \end{array}$	$\begin{array}{r} 4.13 \\ 10.42 \end{array}$	$\begin{array}{r} 4.37 \\ 10.42 \end{array}$	$\begin{array}{r} 7.88 \\ 21.88 \end{array}$	$\begin{array}{r} 4.13 \\ 11.46 \end{array}$	$\begin{array}{r} 4.50 \\ 11.46 \end{array}$	$\begin{array}{r} 4.61 \\ 11.46 \end{array}$	$\begin{array}{r} 4.76 \\ 11.46 \end{array}$
$\begin{aligned} & \text { 505BB2448 } \\ & .500 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 15.01 \\ & 41.67 \end{aligned}$	$\begin{array}{r} 8.44 \\ 20.83 \end{array}$	$\begin{array}{r} 8.66 \\ 20.83 \end{array}$	$\begin{aligned} & 16.60 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 16.50 \\ & 20.83 \end{aligned}$	$\begin{aligned} & 31.50 \\ & 41.67 \end{aligned}$	$\begin{array}{r} 7.50 \\ 20.83 \end{array}$	$\begin{array}{r} 8.26 \\ 20.83 \end{array}$	$\begin{array}{r} 8.73 \\ 20.83 \end{array}$	$\begin{aligned} & 15.76 \\ & 43.75 \end{aligned}$	$\begin{array}{r} 8.26 \\ 22.92 \end{array}$	$\begin{array}{r} 9.01 \\ 22.92 \end{array}$	$\begin{array}{r} 9.21 \\ 22.92 \end{array}$	$\begin{array}{r} 9.53 \\ 22.92 \end{array}$
$\begin{aligned} & \text { 705BB2448 } \\ & .750 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 22.52 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 12.67 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 12.99 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 24.90 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 24.75 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 47.25 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 11.26 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 12.39 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 13.10 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 23.64 \\ & 65.63 \end{aligned}$	$\begin{aligned} & 12.39 \\ & 34.38 \end{aligned}$	$\begin{aligned} & 13.52 \\ & 34.38 \end{aligned}$	$\begin{aligned} & 13.82 \\ & 34.38 \end{aligned}$	$\begin{aligned} & 14.29 \\ & 34.38 \end{aligned}$
$\begin{aligned} & 1 B B 2448 \\ & 1.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 30.02 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 16.89 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 17.32 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 33.20 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 33.00 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 63.00 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 15.01 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 16.51 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 17.47 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 31.52 \\ & 87.50 \end{aligned}$	$\begin{aligned} & 16.51 \\ & 45.83 \end{aligned}$	$\begin{aligned} & 18.02 \\ & 45.83 \end{aligned}$	$\begin{aligned} & 18.42 \\ & 45.83 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 45.83 \end{aligned}$
$\begin{aligned} & \text { 105BB2448 } \\ & 1.50 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 45.03 \\ 125.00 \end{array}$	$\begin{aligned} & 25.33 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 25.98 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 49.80 \\ 125.00 \end{array}$	$\begin{aligned} & 49.50 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 94.50 \\ 125.00 \end{array}$	$\begin{aligned} & 22.52 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 24.77 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 26.20 \\ & 62.50 \end{aligned}$	47.28 131.25	$\begin{aligned} & 24.77 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 27.03 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 27.63 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 28.53 \\ & 68.75 \end{aligned}$
$\begin{aligned} & 2 \mathrm{BB} 2448 \\ & 2.00 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 60.06 \\ 166.67 \end{array}$	$\begin{aligned} & 33.77 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 34.64 \\ & 83.33 \end{aligned}$	$\begin{array}{r} 66.40 \\ 166.67 \end{array}$	$\begin{aligned} & 66.00 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 126.00 \\ & 166.66 \end{aligned}$	$\begin{aligned} & 30.02 \\ & 83.33 \end{aligned}$	$\begin{aligned} & \hline 33.03 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 83.33 \end{aligned}$	$\begin{array}{r} 63.05 \\ 175.00 \end{array}$	$\begin{aligned} & 33.03 \\ & 91.67 \end{aligned}$	$\begin{aligned} & 36.04 \\ & 91.67 \end{aligned}$	$\begin{aligned} & 36.84 \\ & 91.67 \end{aligned}$	$\begin{aligned} & 38.11 \\ & 91.67 \end{aligned}$
$\begin{aligned} & 3 B B 2448 \\ & 3.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 90.07 \\ 250.00 \end{array}$	$\begin{array}{r} 50.66 \\ 125.00 \end{array}$	$\begin{array}{r} 51.96 \\ 125.00 \end{array}$	$\begin{array}{r} 99.59 \\ 250.00 \end{array}$	$\begin{array}{r} 99.00 \\ 125.00 \end{array}$	$\begin{aligned} & 189.00 \\ & 250.00 \end{aligned}$	$\begin{array}{r} 45.03 \\ 125.00 \end{array}$	$\begin{array}{r} 49.54 \\ 125.00 \end{array}$	$\begin{array}{r} 52.39 \\ 125.00 \end{array}$	$\begin{array}{r} 94.57 \\ 262.50 \end{array}$	$\begin{array}{r} 49.54 \\ 137.50 \end{array}$	$\begin{array}{r} 54.06 \\ 137.50 \end{array}$	$\begin{array}{r} 55.25 \\ 137.50 \end{array}$	$\begin{array}{r} 57.16 \\ 137.50 \end{array}$
$\begin{aligned} & \text { 5BB2448 } \\ & 5.00 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 150.11 \\ & 416.67 \end{aligned}$	$\begin{array}{r} 84.44 \\ 208.33 \end{array}$	$\begin{array}{r} 86.60 \\ 208.33 \end{array}$	$\begin{aligned} & 165.00 \\ & 416.67 \end{aligned}$	$\begin{aligned} & 165.00 \\ & 208.33 \end{aligned}$	$\begin{aligned} & 318.00 \\ & 416.66 \end{aligned}$	$\begin{array}{r} 75.05 \\ 208.33 \end{array}$	$\begin{array}{r} 82.56 \\ 208.33 \end{array}$	$\begin{array}{r} 87.32 \\ 208.33 \end{array}$	$\begin{aligned} & 157.62 \\ & 437.50 \end{aligned}$	$\begin{array}{r} 82.56 \\ 229.17 \end{array}$	$\begin{array}{r} 90.10 \\ 229.17 \end{array}$	$\begin{array}{r} 92.09 \\ 229.17 \end{array}$	$\begin{array}{r} 95.26 \\ 229.17 \end{array}$
Quantity Required			3	3	3	3	3	3	2	2	2	2	2	2	2	2
Connection Diagram			F	E	E	F	J	K	G	G	G	H	G	G	G	G
Rated Output Voltage voltage for lower input voltage can be found by:																

Buck-Boost Transformers

120×240 Volts Primary - 16/32 Volts Secondary - 60Hz - No Taps - Wall Mounted

Single Phase - Table 3			Boosting								Bucking					
Catalog Number	Line Voltage (Available)		95	100	105	208	215	215	220	225	135	240	240	245	250	255
Insulating Transformer Rating	Load Voltage (Output)		120	114	119	240	244	230	235	240	119	208	225	230	234	239
$\begin{aligned} & \text { 050BB1632 } \\ & .050 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .19 \\ 1.56 \end{array}$	$\begin{array}{r} .36 \\ 3.12 \end{array}$	$\begin{array}{r} .37 \\ 3.12 \end{array}$	$\begin{array}{r} .37 \\ 1.56 \end{array}$	$\begin{array}{r} .38 \\ 1.56 \end{array}$	$\begin{array}{r} .72 \\ 3.12 \end{array}$	$\begin{array}{r} .73 \\ 3.12 \end{array}$	$\begin{array}{r} .73 \\ 3.12 \end{array}$	$\begin{array}{r} .42 \\ 3.54 \end{array}$	$\begin{array}{r} .37 \\ 1.77 \end{array}$	$\begin{array}{r} .75 \\ 3.33 \end{array}$	$\begin{array}{r} .77 \\ 3.33 \end{array}$	$\begin{array}{r} .78 \\ 3.33 \end{array}$	$\begin{array}{r} .80 \\ 3.33 \end{array}$
$\begin{aligned} & \text { 100BB1632 } \\ & .100 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .38 \\ 3.13 \end{array}$	$\begin{array}{r} .72 \\ 6.25 \end{array}$	$\begin{array}{r} .74 \\ 6.25 \end{array}$	$\begin{array}{r} .74 \\ 3.13 \end{array}$	$\begin{array}{r} .76 \\ 3.13 \end{array}$	$\begin{aligned} & 1.44 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 6.25 \end{aligned}$	$\begin{array}{r} .84 \\ 7.09 \end{array}$	$\begin{array}{r} .74 \\ 3.54 \end{array}$	$\begin{aligned} & 1.50 \\ & 6.66 \end{aligned}$	$\begin{aligned} & 1.54 \\ & 6.66 \end{aligned}$	$\begin{aligned} & 1.56 \\ & 6.66 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 6.66 \end{aligned}$
$\begin{aligned} & \text { 150BB1632 } \\ & .150 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .56 \\ 4.69 \end{array}$	$\begin{aligned} & 1.06 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 4.69 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 4.69 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 2.26 \\ & 9.38 \end{aligned}$	$\begin{array}{r} 1.26 \\ 10.64 \end{array}$	$\begin{aligned} & 1.10 \\ & 5.30 \end{aligned}$	$\begin{array}{r} 2.26 \\ 10.02 \end{array}$	$\begin{array}{r} 2.30 \\ 10.02 \end{array}$	$\begin{array}{r} 2.34 \\ 10.02 \end{array}$	$\begin{array}{r} 2.40 \\ 10.02 \end{array}$
$\begin{aligned} & \text { 205BB1632 } \\ & .250 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .94 \\ 7.81 \end{array}$	$\begin{array}{r} 1.78 \\ 15.63 \end{array}$	$\begin{array}{r} 1.86 \\ 15.63 \end{array}$	$\begin{aligned} & 1.88 \\ & 7.81 \end{aligned}$	$\begin{aligned} & 1.91 \\ & 7.81 \end{aligned}$	$\begin{array}{r} 3.59 \\ 15.63 \end{array}$	$\begin{array}{r} 3.67 \\ 15.63 \end{array}$	$\begin{array}{r} 3.75 \\ 15.63 \end{array}$	$\begin{array}{r} 2.11 \\ 17.71 \end{array}$	$\begin{aligned} & 1.84 \\ & 8.85 \end{aligned}$	$\begin{array}{r} 3.75 \\ 16.67 \end{array}$	$\begin{array}{r} 3.83 \\ 16.67 \end{array}$	$\begin{array}{r} 3.90 \\ 16.67 \end{array}$	$\begin{array}{r} 3.98 \\ 16.67 \end{array}$
$\begin{aligned} & \text { 505BB1632 } \\ & .500 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 1.88 \\ 15.63 \end{array}$	$\begin{array}{r} 3.56 \\ 31.25 \end{array}$	$\begin{array}{r} 3.72 \\ 31.25 \end{array}$	$\begin{array}{r} 3.75 \\ 15.63 \end{array}$	$\begin{array}{r} 3.81 \\ 15.63 \end{array}$	$\begin{array}{r} 7.19 \\ 31.25 \end{array}$	$\begin{array}{r} 7.34 \\ 31.25 \end{array}$	$\begin{array}{r} 7.50 \\ 31.25 \end{array}$	$\begin{array}{r} 4.21 \\ 35.42 \end{array}$	$\begin{array}{r} 3.68 \\ 17.71 \end{array}$	$\begin{array}{r} 7.50 \\ 33.33 \end{array}$	$\begin{array}{r} 7.67 \\ 33.33 \end{array}$	$\begin{array}{r} 7.80 \\ 33.33 \end{array}$	$\begin{array}{r} 7.97 \\ 33.33 \\ \hline \end{array}$
$\begin{aligned} & \text { 705BB1632 } \\ & .750 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 2.81 \\ 23.44 \end{array}$	$\begin{array}{r} 5.34 \\ 46.88 \end{array}$	$\begin{array}{r} 5.58 \\ 46.88 \end{array}$	$\begin{array}{r} 5.63 \\ 23.44 \end{array}$	$\begin{array}{r} 5.72 \\ 23.44 \end{array}$	$\begin{aligned} & 10.78 \\ & 46.88 \end{aligned}$	$\begin{aligned} & 11.02 \\ & 46.88 \end{aligned}$	$\begin{aligned} & 11.25 \\ & 46.88 \end{aligned}$	$\begin{array}{r} 6.32 \\ 53.13 \end{array}$	$\begin{array}{r} 5.53 \\ 26.56 \end{array}$	$\begin{aligned} & 11.25 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 11.50 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 11.70 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 11.95 \\ & 50.00 \end{aligned}$
$\begin{aligned} & 1 \text { 1BB1632 } \\ & 1.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 3.75 \\ 31.25 \end{array}$	$\begin{array}{r} 7.13 \\ 62.50 \end{array}$	$\begin{array}{r} 7.44 \\ 62.50 \end{array}$	$\begin{array}{r} 7.50 \\ 31.25 \end{array}$	$\begin{array}{r} 7.63 \\ 31.25 \end{array}$	$\begin{aligned} & 14.38 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 14.69 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 15.00 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 8.43 \\ 70.83 \end{array}$	$\begin{array}{r} 7.37 \\ 35.42 \end{array}$	$\begin{aligned} & 15.00 \\ & 66.67 \end{aligned}$	$\begin{aligned} & 15.33 \\ & 66.67 \end{aligned}$	$\begin{aligned} & 15.60 \\ & 66.67 \end{aligned}$	$\begin{aligned} & 15.93 \\ & 66.67 \end{aligned}$
$\begin{aligned} & \text { 105BB1632 } \\ & 1.50 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 5.63 \\ 46.90 \end{array}$	$\begin{aligned} & 10.69 \\ & 93.80 \end{aligned}$	11.16 93.80	11.25 46.90	11.44 46.90	21.56 93.80	22.03 93.80	22.50 93.80	12.64 106.30	11.05 53.10	22.50 100.00	23.00 100.00	23.40 100.00	$\begin{array}{r} 23.90 \\ 100.00 \end{array}$
$\begin{aligned} & 2 \text { 2BB1632 } \\ & 2.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 7.50 \\ 62.50 \end{array}$	$\begin{array}{r} 14.25 \\ 125.00 \end{array}$	$\begin{array}{r} 14.88 \\ 125.00 \end{array}$	$\begin{aligned} & 15.00 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 15.25 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 28.75 \\ 125.00 \end{array}$	$\begin{array}{r} 29.38 \\ 125.00 \end{array}$	$\begin{array}{r} 30.00 \\ 125.00 \end{array}$	$\begin{array}{r} 16.86 \\ 141.70 \end{array}$	$\begin{aligned} & 14.73 \\ & 70.80 \end{aligned}$	$\begin{array}{r} 30.00 \\ 133.30 \end{array}$	$\begin{array}{r} 30.67 \\ 133.30 \end{array}$	$\begin{array}{r} 31.20 \\ 133.30 \end{array}$	$\begin{array}{r} 31.87 \\ 133.30 \end{array}$
$\begin{aligned} & 3 B B 1632 \\ & 3.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 11.25 \\ & 93.80 \end{aligned}$	$\begin{array}{r} 21.38 \\ 187.50 \end{array}$	$\begin{array}{r} 22.31 \\ 187.50 \end{array}$	$\begin{aligned} & 22.50 \\ & 93.80 \end{aligned}$	$\begin{aligned} & 22.88 \\ & 93.80 \end{aligned}$	$\begin{array}{r} 43.13 \\ 187.50 \end{array}$	$\begin{array}{r} 44.06 \\ 187.50 \end{array}$	$\begin{array}{r} 45.00 \\ 187.50 \end{array}$	$\begin{array}{r} 25.29 \\ 212.50 \end{array}$	$\begin{array}{r} 22.10 \\ 106.30 \end{array}$	$\begin{array}{r} 45.00 \\ 200.00 \end{array}$	$\begin{array}{r} 46.00 \\ 200.00 \end{array}$	$\begin{array}{r} 46.80 \\ 200.00 \end{array}$	$\begin{array}{r} 47.80 \\ 200.00 \end{array}$
$\begin{aligned} & \hline \text { 5BB1632 } \\ & 5.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 18.75 \\ 156.30 \end{array}$	$\begin{array}{r} 35.63 \\ 312.50 \end{array}$	$\begin{array}{r} 37.19 \\ 312.50 \end{array}$	$\begin{array}{r} 37.50 \\ 156.30 \end{array}$	$\begin{array}{r} 38.13 \\ 156.30 \end{array}$	$\begin{array}{r} 71.88 \\ 312.50 \end{array}$	$\begin{array}{r} 73.44 \\ 312.50 \end{array}$	$\begin{array}{r} 75.00 \\ 312.50 \end{array}$	$\begin{array}{r} 42.15 \\ 354.20 \end{array}$	$\begin{array}{r} 36.83 \\ 177.10 \end{array}$	$\begin{array}{r} 75.00 \\ 333.30 \end{array}$	$\begin{array}{r} 76.67 \\ 333.30 \end{array}$	$\begin{array}{r} 78.00 \\ 333.30 \end{array}$	$\begin{array}{r} 79.67 \\ 333.30 \end{array}$
Connection Diagram			B	A	A	D	D	C	C	C	A	D	C	C	C	C

Three Phase - Table 4			Boosting					Bucking					
Catalog Number	Line Voltage (Available)		$\begin{gathered} 183 Y \\ 106 \end{gathered}$	$\begin{gathered} 208 Y \\ 120 \end{gathered}$	195	208	225	240	245	250	256	265	272
Insulating Transformer Rating	Load Voltage (Output)		208	236	208	240	240	208	230	234	240	234	240
$\begin{aligned} & \hline \text { 050BB1632 } \\ & .050 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 1.13 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 3.13 \end{aligned}$	$\begin{array}{r} .62 \\ 1.56 \end{array}$	$\begin{aligned} & 1.30 \\ & 3.13 \end{aligned}$	$\begin{array}{r} .56 \\ 1.56 \end{array}$	$\begin{aligned} & 1.33 \\ & 3.34 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 3.34 \end{aligned}$	$\begin{aligned} & 1.39 \\ & 3.34 \end{aligned}$	$\begin{array}{r} .72 \\ 1.77 \end{array}$	$\begin{array}{r} .74 \\ 1.77 \end{array}$
$\begin{aligned} & 100 \mathrm{BB1632} \\ & .100 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 2.25 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 2.55 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 3.13 \end{aligned}$	2.66 6.67	$\begin{aligned} & 2.70 \\ & 6.67 \end{aligned}$	$\begin{aligned} & 2.77 \\ & 6.67 \end{aligned}$	1.44 3.55	1.48 3.55
$\begin{aligned} & \text { 150BB1632 } \\ & .150 \mathrm{KVA} \end{aligned}$	Load	$\begin{aligned} & \hline \text { KVA } \\ & \text { Amps } \end{aligned}$	$\begin{aligned} & 3.38 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 3.83 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 3.38 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 1.95 \\ & 4.69 \end{aligned}$	$\begin{aligned} & 3.90 \\ & 9.38 \end{aligned}$	$\begin{aligned} & 1.69 \\ & 4.69 \end{aligned}$	$\begin{array}{r} 3.98 \\ 10.00 \end{array}$	$\begin{array}{r} 4.05 \\ 10.00 \end{array}$	$\begin{array}{r} 4.16 \\ 10.00 \end{array}$	$\begin{aligned} & 2.15 \\ & 5.31 \end{aligned}$	$\begin{aligned} & 2.21 \\ & 5.31 \end{aligned}$
$\begin{aligned} & \text { 205BB1632 } \\ & .250 \mathrm{KVA} \\ & \hline \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 5.63 \\ 15.63 \end{array}$	$\begin{array}{r} \hline 6.39 \\ 15.63 \end{array}$	$\begin{array}{r} 5.63 \\ 15.63 \end{array}$	$\begin{aligned} & 3.17 \\ & 7.81 \end{aligned}$	$\begin{array}{r} 6.50 \\ 15.63 \end{array}$	$\begin{aligned} & 2.81 \\ & 7.81 \end{aligned}$	$\begin{array}{r} \hline 6.64 \\ 16.67 \end{array}$	$\begin{array}{r} \hline 6.76 \\ 16.67 \end{array}$	$\begin{array}{r} 6.93 \\ 16.67 \end{array}$	$\begin{aligned} & 3.59 \\ & 8.85 \end{aligned}$	$\begin{aligned} & 3.68 \\ & 8.85 \end{aligned}$
505BB1632 . 500 KVA	Load	KVA Amps	$\begin{aligned} & 11.26 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 12.77 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 11.26 \\ & 31.25 \end{aligned}$	$\begin{array}{r} 6.33 \\ 15.63 \end{array}$	$\begin{aligned} & 12.99 \\ & 31.25 \end{aligned}$	$\begin{array}{r} 5.63 \\ 15.63 \end{array}$	$\begin{aligned} & 13.28 \\ & 33.33 \end{aligned}$	$\begin{aligned} & 13.50 \\ & 33.33 \end{aligned}$	$\begin{aligned} & 13.86 \\ & 33.33 \end{aligned}$	$\begin{array}{r} 7.17 \\ 17.69 \end{array}$	$\begin{array}{r} 7.36 \\ 17.71 \end{array}$
$\begin{aligned} & 705 \mathrm{BB1632} \\ & .750 \mathrm{KVA} \\ & \hline \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 16.89 \\ & 46.88 \end{aligned}$	$\begin{aligned} & 19.16 \\ & 46.88 \end{aligned}$	$\begin{aligned} & 16.89 \\ & 46.88 \end{aligned}$	$\begin{array}{r} 9.50 \\ 23.44 \end{array}$	$\begin{aligned} & 19.49 \\ & 46.88 \end{aligned}$	$\begin{array}{r} 8.44 \\ 23.44 \end{array}$	$\begin{aligned} & 19.92 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 20.26 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 20.78 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 10.76 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 11.04 \\ & 26.56 \end{aligned}$
$\begin{aligned} & \text { 1BB1632 } \\ & 1.00 \mathrm{KVA} \end{aligned}$	Load	$\begin{aligned} & \text { KVA } \\ & \text { Amps } \end{aligned}$	$\begin{aligned} & 22.52 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 25.55 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 22.52 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 12.67 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 25.98 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 11.26 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 26.56 \\ & 66.67 \end{aligned}$	$\begin{aligned} & 27.02 \\ & 66.67 \end{aligned}$	$\begin{aligned} & 27.71 \\ & 66.67 \end{aligned}$	$\begin{aligned} & 14.34 \\ & 35.39 \end{aligned}$	$\begin{aligned} & 14.72 \\ & 35.42 \end{aligned}$
$\begin{aligned} & \text { 105BB1632 } \\ & \text { 1.50 KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 33.77 \\ & 93.75 \end{aligned}$	$\begin{aligned} & 38.32 \\ & 93.75 \end{aligned}$	$\begin{aligned} & 33.77 \\ & 93.75 \end{aligned}$	$\begin{aligned} & 19.00 \\ & 46.88 \end{aligned}$	$\begin{aligned} & 38.97 \\ & 93.75 \end{aligned}$	$\begin{aligned} & 16.89 \\ & 46.88 \end{aligned}$	$\begin{array}{r} 39.84 \\ 100.00 \end{array}$	$\begin{array}{r} 40.53 \\ 100.00 \end{array}$	$\begin{array}{r} 41.57 \\ 100.00 \end{array}$	$\begin{aligned} & 21.52 \\ & 53.08 \end{aligned}$	$\begin{aligned} & 22.08 \\ & 53.13 \end{aligned}$
$\begin{aligned} & \text { 2BB1632 } \\ & \text { 2.00 KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 45.03 \\ 125.00 \end{array}$	$\begin{array}{r} 51.10 \\ 125.00 \end{array}$	$\begin{array}{r} 46.03 \\ 125.00 \end{array}$	$\begin{aligned} & 25.33 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 51.96 \\ 125.00 \end{array}$	$\begin{aligned} & 22.52 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 53.11 \\ 133.33 \end{array}$	$\begin{array}{r} 54.04 \\ 133.33 \end{array}$	$\begin{array}{r} 55.43 \\ 133.33 \end{array}$	$\begin{aligned} & 28.69 \\ & 70.78 \end{aligned}$	$\begin{aligned} & 29.44 \\ & 70.83 \end{aligned}$
$\begin{aligned} & \text { 3BB1632 } \\ & \text { 3.00 KVA } \end{aligned}$	Load	$\begin{aligned} & \text { KVA } \\ & \text { Amps } \end{aligned}$	$\begin{array}{r} 67.55 \\ 187.50 \end{array}$	$\begin{array}{r} 76.64 \\ 187.50 \end{array}$	$\begin{array}{r} 67.55 \\ 187.50 \end{array}$	$\begin{aligned} & 38.00 \\ & 93.75 \end{aligned}$	$\begin{array}{r} 77.94 \\ 187.50 \end{array}$	$\begin{aligned} & 33.77 \\ & 93.75 \end{aligned}$	$\begin{array}{r} 79.67 \\ 200.00 \end{array}$	$\begin{array}{r} 81.06 \\ 200.00 \end{array}$	$\begin{array}{r} 83.14 \\ 200.00 \end{array}$	$\begin{array}{r} 43.03 \\ 106.17 \end{array}$	$\begin{array}{r} 44.17 \\ 106.25 \end{array}$
$\begin{aligned} & \text { 5BB1632 } \\ & 5.00 \text { KVA } \end{aligned}$	Load	$\begin{aligned} & \text { KVA } \\ & \text { Amps } \end{aligned}$	$\begin{aligned} & 112.58 \\ & 312.50 \end{aligned}$	$\begin{aligned} & 127.74 \\ & 312.50 \end{aligned}$	$\begin{aligned} & 112.58 \\ & 312.50 \end{aligned}$	$\begin{array}{r} 63.33 \\ 156.25 \end{array}$	$\begin{aligned} & 129.90 \\ & 312.50 \end{aligned}$	$\begin{array}{r} 56.29 \\ 156.25 \end{array}$	$\begin{aligned} & 132.79 \\ & 333.33 \end{aligned}$	$\begin{aligned} & 135.09 \\ & 333.33 \end{aligned}$	$\begin{aligned} & 138.56 \\ & 333.33 \end{aligned}$	$\begin{array}{r} 71.72 \\ 176.95 \end{array}$	$\begin{array}{r} 73.61 \\ 177.08 \end{array}$
Quantity Req	uired		3	3	2	2	2	2	2	2	2	2	2
Connection D	Diagram		F	F	H	G	H	L	H	H	H	G	G
*Output KVA available at reduced input voltage can be found by:						Actual Input Voltage		Output	$=$ New	VA Rating			

Buck-Boost Transformers

240×480 Volts Primary - 24/48 Volts Secondary - 60 Hz - No Taps - Wall Mounted

Single Phase - Table 5			Boosting										Bucking			
Catalog Number	Line Voltage (Available)		230	380	416	425	430	435	440	440	450	460	277	480	480	504
Insulating Transformer Rating	Load Voltage (Output)		277	420	457	467	473	457	462	484	472	483	230	436	456	480
$\begin{aligned} & \text { 050BB1224 } \\ & .050 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .29 \\ 1.04 \end{array}$	$\begin{array}{r} .44 \\ 1.04 \end{array}$	$\begin{array}{r} .48 \\ 1.04 \end{array}$	$\begin{array}{r} .49 \\ 1.04 \end{array}$	$\begin{array}{r} .49 \\ 1.04 \end{array}$	$\begin{array}{r} .95 \\ 2.08 \end{array}$	$\begin{array}{r} .96 \\ 2.08 \end{array}$	$\begin{array}{r} .50 \\ 1.04 \end{array}$	$\begin{array}{r} .98 \\ 2.08 \end{array}$	$\begin{aligned} & 1.01 \\ & 2.08 \end{aligned}$	$\begin{array}{r} .29 \\ 1.25 \end{array}$	$\begin{array}{r} .50 \\ 1.15 \end{array}$	$\begin{aligned} & 1.05 \\ & 2.29 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 2.29 \end{aligned}$
$\begin{aligned} & \text { 100BB1224 } \\ & .100 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .58 \\ 2.08 \end{array}$	$\begin{array}{r} .87 \\ 2.08 \end{array}$	$\begin{array}{r} .95 \\ 2.08 \end{array}$	$\begin{array}{r} .97 \\ 2.08 \end{array}$	$\begin{array}{r} .99 \\ 2.08 \end{array}$	$\begin{aligned} & 1.90 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 1.93 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 2.08 \end{aligned}$	$\begin{aligned} & 1.97 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 2.01 \\ & 4.17 \end{aligned}$	$\begin{array}{r} .58 \\ 2.50 \end{array}$	$\begin{aligned} & 1.00 \\ & 2.29 \end{aligned}$	$\begin{aligned} & 2.09 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 4.58 \end{aligned}$
$\begin{aligned} & \text { 150BB1224 } \\ & .150 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .87 \\ 3.13 \end{array}$	$\begin{aligned} & 1.31 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 2.89 \\ & 6.25 \end{aligned}$	1.51 3.13	$\begin{aligned} & 2.95 \\ & 6.25 \end{aligned}$	3.02 6.25	$\begin{array}{r}.86 \\ 3.75 \\ \hline\end{array}$	1.50 3.44	$\begin{aligned} & \hline 3.14 \\ & 6.88 \end{aligned}$	$\begin{aligned} & \hline 3.00 \\ & 6.88 \end{aligned}$
$\begin{aligned} & \text { 205BB1224 } \\ & .250 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 1.44 \\ & 5.21 \end{aligned}$	2.19 5.21	$\begin{aligned} & 2.38 \\ & 5.21 \end{aligned}$	2.43 5.21	$\begin{aligned} & 2.46 \\ & 5.21 \end{aligned}$	$\begin{aligned} & 4.76 \\ & 5.21 \end{aligned}$	$\begin{array}{r} 4.81 \\ 10.42 \end{array}$	$\begin{aligned} & 2.52 \\ & 5.21 \end{aligned}$	$\begin{array}{r} 4.92 \\ 10.42 \end{array}$	$\begin{array}{r} 5.03 \\ 10.42 \end{array}$	$\begin{aligned} & 1.44 \\ & 6.25 \end{aligned}$	2.50 5.73	$\begin{array}{r} 5.23 \\ 11.46 \end{array}$	$\begin{array}{r} 5.50 \\ 11.46 \end{array}$
$\begin{aligned} & \text { 505BB1224 } \\ & .500 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 2.89 \\ 10.42 \end{array}$	$\begin{array}{r} 4.38 \\ 10.42 \end{array}$	$\begin{array}{r} 4.76 \\ 10.42 \end{array}$	$\begin{array}{r} 4.86 \\ 10.42 \end{array}$	$\begin{array}{r} 4.93 \\ 10.42 \end{array}$	$\begin{array}{r} 9.52 \\ 20.83 \end{array}$	$\begin{array}{r} 9.62 \\ 20.83 \end{array}$	$\begin{array}{r} 5.04 \\ 10.42 \end{array}$	$\begin{array}{r} 9.83 \\ 20.83 \end{array}$	$\begin{aligned} & 10.06 \\ & 20.83 \end{aligned}$	$\begin{array}{r} 2.88 \\ 12.50 \end{array}$	$\begin{array}{r} 5.00 \\ 11.46 \end{array}$	$\begin{aligned} & 10.45 \\ & 22.92 \end{aligned}$	$\begin{aligned} & 11.00 \\ & 22.92 \end{aligned}$
$\begin{aligned} & \text { 705BB1224 } \\ & .750 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 4.33 \\ 15.63 \end{array}$	$\begin{array}{r} 6.56 \\ 15.63 \end{array}$	$\begin{array}{r} 7.14 \\ 15.63 \end{array}$	$\begin{array}{r} 7.30 \\ 15.63 \end{array}$	$\begin{array}{r} 7.39 \\ 15.63 \end{array}$	$\begin{aligned} & 14.28 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 14.44 \\ & 31.25 \end{aligned}$	$\begin{array}{r} 7.56 \\ 15.63 \end{array}$	$\begin{aligned} & 14.75 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 15.09 \\ & 31.25 \end{aligned}$	$\begin{array}{r} 4.31 \\ 18.75 \end{array}$	$\begin{array}{r} 7.49 \\ 17.19 \end{array}$	$\begin{aligned} & 15.68 \\ & 34.38 \end{aligned}$	$\begin{aligned} & 16.50 \\ & 34.38 \end{aligned}$
$\begin{aligned} & 1 B B 1224 \\ & 1.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 5.77 \\ 20.83 \end{array}$	$\begin{array}{r} 8.57 \\ 20.83 \end{array}$	$\begin{array}{r} 9.52 \\ 20.83 \end{array}$	$\begin{array}{r} 9.73 \\ 20.83 \end{array}$	$\begin{array}{r} 9.85 \\ 20.83 \end{array}$	$\begin{aligned} & 19.04 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 19.25 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 10.08 \\ & 20.83 \end{aligned}$	$\begin{aligned} & 19.67 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 20.13 \\ & 41.67 \end{aligned}$	$\begin{array}{r} 5.75 \\ 25.00 \end{array}$	$\begin{array}{r} 9.99 \\ 22.92 \end{array}$	$\begin{aligned} & 20.90 \\ & 45.83 \end{aligned}$	$\begin{aligned} & 22.00 \\ & 45.83 \end{aligned}$
$\begin{aligned} & \text { 105BB1224 } \\ & 1.50 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 8.66 \\ 31.25 \end{array}$	$\begin{aligned} & 13.13 \\ & 31.25 \end{aligned}$	14.28 31.25	$\begin{aligned} & 14.59 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 14.78 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 28.56 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 28.88 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 15.13 \\ & 31.25 \end{aligned}$	$\begin{aligned} & 29.50 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 30.19 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 8.63 \\ 37.50 \end{array}$	$\begin{aligned} & 14.99 \\ & 34.38 \end{aligned}$	$\begin{aligned} & 31.25 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 33.00 \\ & 68.75 \end{aligned}$
$\begin{aligned} & 2 B B 1224 \\ & 2.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 11.54 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 19.04 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 19.46 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 19.71 \\ & 41.67 \end{aligned}$	$\begin{aligned} & 38.08 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 38.50 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 20.17 \\ & 41.67 \end{aligned}$	$\begin{aligned} & \hline 39.33 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 40.25 \\ & 83.33 \end{aligned}$	$\begin{aligned} & 11.50 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 19.98 \\ & 45.83 \end{aligned}$	$\begin{aligned} & 41.80 \\ & 91.67 \end{aligned}$	$\begin{aligned} & 44.00 \\ & 91.67 \end{aligned}$
$\begin{aligned} & 3 B B 1224 \\ & 3.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 17.31 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 26.25 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 28.56 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 29.19 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 29.56 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 57.13 \\ 125.00 \end{array}$	$\begin{array}{r} 57.75 \\ 125.00 \end{array}$	$\begin{aligned} & 30.25 \\ & 62.50 \end{aligned}$	$\begin{array}{r} 59.00 \\ 125.00 \end{array}$	$\begin{array}{r} 60.38 \\ 125.00 \end{array}$	$\begin{aligned} & 17.25 \\ & 75.00 \end{aligned}$	$\begin{aligned} & 29.98 \\ & 68.80 \end{aligned}$	$\begin{array}{r} 62.70 \\ 137.50 \end{array}$	$\begin{array}{r} 66.00 \\ 137.50 \end{array}$
$\begin{aligned} & \text { 5BB1224 } \\ & 5.00 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 28.90 \\ 104.20 \end{array}$	$\begin{array}{r} 43.80 \\ 104.20 \end{array}$	$\begin{array}{r} 47.60 \\ 104.20 \end{array}$	$\begin{array}{r} 48.60 \\ 104.20 \end{array}$	$\begin{array}{r} 49.30 \\ 104.20 \end{array}$	$\begin{array}{r} 95.20 \\ 208.30 \end{array}$	$\begin{array}{r} 96.20 \\ 208.30 \end{array}$	$\begin{array}{r} 50.40 \\ 104.20 \end{array}$	$\begin{array}{r} 98.30 \\ 208.30 \end{array}$	$\begin{aligned} & 100.60 \\ & 208.30 \end{aligned}$	$\begin{array}{r} 28.80 \\ 125.00 \end{array}$	$\begin{array}{r} 50.00 \\ 114.60 \end{array}$	$\begin{aligned} & 104.50 \\ & 229.20 \end{aligned}$	$\begin{aligned} & 110.00 \\ & 229.20 \end{aligned}$
Connection Diagram			B	D	D	D	D	C	C	D	C	C	B	D	C	C

Three Phase - Table 6			Boosting								Bucking							
Catalog Number	Line Voltage (Available)		$\begin{aligned} & 399 Y \\ & 230 \end{aligned}$	380	430	440	460	460	480	480	440	440	460	460	480	480	500	500
Insulating Transformer Rating	Load Voltage (Output)		$\begin{aligned} & 480 Y \\ & 277 \end{aligned}$	420	473	462	506	483	528	504	400	419	438	418	457	436	455	477
$\begin{aligned} & \text { 050BB1224 } \\ & .050 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} .86 \\ 1.04 \end{array}$	$\begin{array}{r} .76 \\ 1.04 \\ \hline \end{array}$	$\begin{array}{r} .85 \\ 1.04 \end{array}$	$\begin{aligned} & 1.66 \\ & 2.08 \\ & \hline \end{aligned}$	$\begin{array}{r} .91 \\ 1.04 \end{array}$	$\begin{aligned} & 1.74 \\ & 2.08 \\ & \hline \end{aligned}$	$\begin{array}{r} .95 \\ 1.04 \end{array}$	$\begin{aligned} & 1.82 \\ & 2.08 \\ & \hline \end{aligned}$.79 1.14	1.58 2.18	$\begin{aligned} & 1.66 \\ & 2.18 \\ & \hline \end{aligned}$.83 1.14	$\begin{aligned} & 1.73 \\ & 2.18 \end{aligned}$	$\begin{array}{r} .86 \\ 1.14 \end{array}$	$\begin{array}{r} .90 \\ 1.14 \end{array}$	$\begin{aligned} & 1.80 \\ & 2.18 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 100BB1224 } \\ & .100 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 1.73 \\ & 2.08 \end{aligned}$	1.51 2.08	1.70 2.08	$\begin{aligned} & 3.33 \\ & 4.16 \end{aligned}$	1.82 2.08	$\begin{aligned} & 3.48 \\ & 4.16 \end{aligned}$	1.90 2.08	$\begin{aligned} & 3.63 \\ & 4.16 \end{aligned}$	1.59 2.29	3.17 4.37	3.31 4.37	1.66 2.29	3.46 4.37	1.73 2.29	1.80 2.29	$\begin{aligned} & 3.61 \\ & 4.37 \end{aligned}$
$\begin{aligned} & \text { 150BB1224 } \\ & .150 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 2.60 \\ & 3.12 \end{aligned}$	$\begin{aligned} & 2.27 \\ & 3.12 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 3.12 \end{aligned}$	$\begin{aligned} & 4.99 \\ & 6.24 \end{aligned}$	$\begin{aligned} & 2.73 \\ & 3.12 \end{aligned}$	$\begin{aligned} & 5.22 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 2.85 \\ & 3.12 \end{aligned}$	$\begin{aligned} & \hline 5.45 \\ & 6.24 \end{aligned}$	$\begin{aligned} & 2.38 \\ & 3.43 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.75 \\ & 6.55 \end{aligned}$	$\begin{aligned} & 4.97 \\ & 6.55 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.43 \end{aligned}$	$\begin{aligned} & \hline 5.19 \\ & 6.55 \end{aligned}$	$\begin{aligned} & 2.59 \\ & 3.43 \end{aligned}$	$\begin{aligned} & 2.70 \\ & 3.43 \end{aligned}$	$\begin{aligned} & 5.41 \\ & 6.55 \end{aligned}$
$\begin{aligned} & \text { 205BB1224 } \\ & 750 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 4.33 \\ & 5.20 \end{aligned}$	$\begin{aligned} & 3.78 \\ & 5.20 \end{aligned}$	$\begin{aligned} & 4.26 \\ & 5.20 \end{aligned}$	$\begin{array}{r} 8.32 \\ 10.40 \end{array}$	$\begin{aligned} & 4.56 \\ & 5.20 \end{aligned}$	$\begin{array}{r} 8.70 \\ 10.40 \end{array}$	$\begin{aligned} & 4.76 \\ & 5.20 \end{aligned}$	$\begin{array}{r} 9.08 \\ 10.40 \end{array}$	$\begin{aligned} & 3.96 \\ & 5.72 \end{aligned}$	$\begin{array}{r} 7.92 \\ 10.92 \end{array}$	$\begin{array}{r} 8.28 \\ 10.92 \end{array}$	$\begin{aligned} & 4.14 \\ & 5.72 \end{aligned}$	$\begin{array}{r} 8.64 \\ 10.92 \end{array}$	$\begin{aligned} & 4.32 \\ & 5.72 \end{aligned}$	$\begin{aligned} & 4.51 \\ & 5.72 \end{aligned}$	$\begin{array}{r} 9.02 \\ 10.92 \end{array}$
$\begin{aligned} & \text { 505BB1224 } \\ & .500 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{array}{r} 8.60 \\ 10.40 \end{array}$	$\begin{array}{r} 7.56 \\ 10.40 \end{array}$	$\begin{array}{r} 8.52 \\ 10.40 \end{array}$	$\begin{aligned} & \hline 16.64 \\ & 20.80 \end{aligned}$	$\begin{array}{r} 9.11 \\ 10.40 \end{array}$	$\begin{aligned} & 17.40 \\ & 20.80 \end{aligned}$	$\begin{array}{r} 9.51 \\ 10.40 \end{array}$	$\begin{aligned} & 18.16 \\ & 20.80 \end{aligned}$	$\begin{array}{r} 7.93 \\ 11.44 \end{array}$	$\begin{aligned} & 15.85 \\ & 21.84 \end{aligned}$	$\begin{aligned} & 16.57 \\ & 21.84 \end{aligned}$	$\begin{array}{r} 8.28 \\ 11.44 \end{array}$	$\begin{aligned} & 17.29 \\ & 21.84 \end{aligned}$	$\begin{array}{r\|} \hline 8.64 \\ 11.44 \end{array}$	$\begin{array}{r} 9.02 \\ 11.44 \end{array}$	$\begin{array}{l\|} \hline 18.04 \\ 21.84 \end{array}$
$\begin{aligned} & \text { 705BB1224 } \\ & .750 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 12.90 \\ & 15.60 \end{aligned}$	$\begin{aligned} & 11.34 \\ & 15.60 \end{aligned}$	$\begin{aligned} & 12.77 \\ & 15.60 \end{aligned}$	$\begin{aligned} & 24.97 \\ & 31.20 \end{aligned}$	$\begin{aligned} & 13.67 \\ & 15.60 \end{aligned}$	$\begin{aligned} & 26.10 \\ & 31.20 \end{aligned}$	14.27 15.60	$\begin{aligned} & 27.24 \\ & 31.20 \end{aligned}$	$\begin{aligned} & 11.89 \\ & 17.16 \end{aligned}$	23.77 32.76	24.85 32.76	$\begin{aligned} & 12.42 \\ & 17.16 \end{aligned}$	$\begin{aligned} & 25.93 \\ & 32.76 \end{aligned}$	$\begin{aligned} & 12.96 \\ & 17.16 \end{aligned}$	13.52 17.16	$\begin{aligned} & 27.07 \\ & 32.76 \end{aligned}$
$\begin{aligned} & 1 \mathrm{BB} 1224 \\ & 1.00 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 17.30 \\ & 20.80 \end{aligned}$	$\begin{aligned} & 15.12 \\ & 20.80 \end{aligned}$	$\begin{aligned} & 17.03 \\ & 20.80 \end{aligned}$	$\begin{aligned} & 33.29 \\ & 41.60 \end{aligned}$	$\begin{aligned} & 18.23 \\ & 20.80 \end{aligned}$	$\begin{aligned} & 34.80 \\ & 41.60 \end{aligned}$	$\begin{aligned} & 19.02 \\ & 20.80 \end{aligned}$	$\begin{aligned} & 36.31 \\ & 41.60 \end{aligned}$	$\begin{aligned} & 15.85 \\ & 22.88 \end{aligned}$	$\begin{aligned} & 31.70 \\ & 43.68 \end{aligned}$	$\begin{aligned} & 33.14 \\ & 43.68 \end{aligned}$	$\begin{aligned} & 16.57 \\ & 22.88 \end{aligned}$	$\begin{aligned} & 34.57 \\ & 43.68 \end{aligned}$	$\begin{aligned} & 17.28 \\ & 22.88 \end{aligned}$	$\begin{aligned} & 18.03 \\ & 22.88 \end{aligned}$	$\begin{aligned} & 36.09 \\ & 43.68 \end{aligned}$
$\begin{aligned} & \text { 105BB1224 } \\ & 1.50 \text { KVA } \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 25.90 \\ & 31.20 \end{aligned}$	$\begin{aligned} & 22.69 \\ & 31.20 \end{aligned}$	$\begin{aligned} & 25.55 \\ & 31.20 \end{aligned}$	$\begin{aligned} & 49.93 \\ & 62.40 \end{aligned}$	$\begin{aligned} & 27.34 \\ & 31.20 \end{aligned}$	$\begin{aligned} & 52.50 \\ & 62.40 \end{aligned}$	$\begin{aligned} & 28.53 \\ & 31.20 \end{aligned}$	$\begin{aligned} & 54.47 \\ & 62.40 \end{aligned}$	$\begin{aligned} & 23.78 \\ & 34.32 \end{aligned}$	$\begin{aligned} & 47.55 \\ & 65.52 \end{aligned}$	$\begin{aligned} & 49.71 \\ & 65.52 \end{aligned}$	$\begin{aligned} & 24.85 \\ & 34.32 \end{aligned}$	$\begin{aligned} & 51.86 \\ & 65.62 \end{aligned}$	$\begin{aligned} & 25.92 \\ & 34.32 \end{aligned}$	$\begin{aligned} & 27.05 \\ & 34.32 \end{aligned}$	$\begin{aligned} & 54.13 \\ & 65.52 \end{aligned}$
$\begin{aligned} & 2 \text { BB1224 } \\ & 2.00 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 34.60 \\ & 41.60 \end{aligned}$	30.25 41.60	34.07 41.60	$\begin{aligned} & 66.58 \\ & 83.20 \end{aligned}$	$\begin{aligned} & 36.46 \\ & 41.60 \end{aligned}$	$\begin{aligned} & 69.60 \\ & 83.20 \end{aligned}$	38.04 41.60	$\begin{aligned} & 72.63 \\ & 83.20 \end{aligned}$	31.70 45.76	63.40 87.36	66.27 87.36	33.13 45.76	$\begin{aligned} & \hline 69.15 \\ & 87.36 \end{aligned}$	$\begin{aligned} & 34.56 \\ & 45.76 \end{aligned}$	$\begin{aligned} & 36.06 \\ & 45.76 \end{aligned}$	$\begin{aligned} & 72.18 \\ & 87.36 \end{aligned}$
$\begin{aligned} & 3 B B 1224 \\ & 3.00 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{aligned} & 52.00 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 45.45 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 51.18 \\ & 62.50 \end{aligned}$	$\begin{array}{\|l\|l} 100.03 \\ 125.00 \end{array}$	$\begin{aligned} & 54.69 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 104.57 \\ & 125.00 \end{aligned}$	$\begin{aligned} & 57.07 \\ & 62.50 \end{aligned}$	$\begin{aligned} & 109.12 \\ & 125.00 \end{aligned}$	$\begin{aligned} & 47.63 \\ & 68.75 \end{aligned}$	95.25 131.25	$\begin{array}{r} 99.57 \\ 131.25 \end{array}$	$\begin{aligned} & 49.77 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 103.89 \\ & 131.25 \end{aligned}$	$\begin{aligned} & 51.92 \\ & 68.75 \end{aligned}$	$\begin{aligned} & 54.18 \\ & 68.75 \end{aligned}$	$\begin{array}{\|l\|l} 108.44 \\ 131.25 \end{array}$
$\begin{aligned} & \hline 5 \mathrm{BB} 1224 \\ & 5.00 \mathrm{KVA} \end{aligned}$	Load	KVA Amps	$\begin{array}{\|r\|} \hline 86.10 \\ 104.00 \end{array}$	$\begin{array}{\|r\|} \hline 75.62 \\ 104.00 \end{array}$	$\begin{array}{r} 85.17 \\ 104.00 \end{array}$	$\begin{aligned} & 166.44 \\ & 208.00 \end{aligned}$	$\begin{array}{r} 91.15 \\ 104.00 \end{array}$	$\begin{aligned} & 174.01 \\ & 208.00 \end{aligned}$	$\begin{array}{r} 95.11 \\ 104.00 \end{array}$	$\begin{aligned} & 181.57 \\ & 208.00 \end{aligned}$	$\begin{array}{r} 79.26 \\ 114.40 \end{array}$	$\begin{aligned} & 158.50 \\ & 218.40 \end{aligned}$	$\begin{array}{\|l\|} \hline 165.69 \\ 218.40 \end{array}$	$\begin{array}{r} 82.83 \\ 114.40 \end{array}$	$\begin{aligned} & 172.87 \\ & 218.40 \end{aligned}$	$\begin{array}{\|r\|} \hline 86.39 \\ 114.40 \end{array}$	$\begin{array}{r} 90.16 \\ 114.40 \end{array}$	$\begin{array}{\|l\|} \hline 180.44 \\ 218.40 \end{array}$
Quantity Required			3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Connection Diagram			E	G	G	H	G	H	G	H	G	H	H	G	H	G	G	H

*Output voltage for lower input voltage can be found by:
Rated Output Voltage
Rated Input Voltage

Buck-Boost Connection Diagrams

Single Phase

Diagram A

Diagram B

Diagram C

Diagram D

Diagram \#1
(Standard Step-down application)

Three Phase
Diagram E ${ }^{(1)}$

Diagram G

Diagram K ${ }^{(1)}$

Diagram L

(1) The neutral XO should not be used when the source is a three wire supply.

NOTES

- Inputs and Outputs may be reversed: KVA capacity remains constant. All applications are suitable for 60 Hz only.
- Refer to NEC 450-4 for overcurrent protection of an autotransformer.

Industrial Control Circuit Transformer

Features

1. Epoxy-encapsulated (50-750 VA) epoxy resin impregnated (1.0-5.0 KVA). Completely seals the transformer coils against moisture, dust, dirt and industrial contaminants for maximum protection in hostile and industrial environments.
2. Fuse clips (most models). Factory-mounted for integral fusing on the secondary side to save panel space, save wiring time and save the space, save wiring time and save the cost of buying an add-on fuse block.
3. Integrally-molded barriers. Between terminals and between terminals and transformer protect against electrical creepage. Up to 30% greater terminal contact area permits low-loss connections. Extra-deep barriers reduce the chance of shorts from frayed leads or careless wiring.
4. Terminals.

Molded into the transformer and virtually impossible to break during wiring. A full quarter-inch of thread on the 10-32 terminal screws perevents stripping and pullout.
5. Ten year warranty At no additional cost.
6. Jumpers supplied.

Two jumpers links are standard with all transformers which can be jumpered.

Operation

Industrial control circuits and motor control loads typically require more current when they are initially energized than under normal operating conditions. This period of high current demand, referred to as inrush, may be as great as ten times the current required under steady state (normal) operating conditons, and can last up to 40 milliseconds. A transformer in a circuit subject to inrush will typically attempt to provide the load with the required current during the inrush period. However, it will be at the expense of the secondary voltage stability by allowing the voltage to the load to decrease as the current

Selection Process

Selecting a transformer for industrial control circuit applications requires knowledge of the following terms:

Inrush VA is the product of load voltage (V) multiplied by the current (A) that is required during circuit start-up. It is calculated by adding the inrush VA requirements of all devices (contactors, timers, relays, pilot lights, solenoids, etc.), which will be energized together. Inrush VA requirements are best obtained from the component manufacturer.

Sealed VA is the product of load voltage (V) multiplied by the current (A) that is required to operate the circuit after initial start-up or under normal operating conditions. It is calculated by adding the sealed VA requirements of all electrical components of the circuit that will be energized at any given time. Sealed VA requirements are best obtained from the component manufacturer. Sealed VA is also referred to as steady state VA.
Primary Voltage is the voltage available from the electrical distribution system and its operational frequency, which is connected to the transformer supply voltage terminals.
Secondary Voltage is the voltage required for load operation which is connected to the transformer load voltage terminals.

Cll

Once the circuit variables have been determined, transformer selection is a simple 5-step process as follows:

1. Determine the Application Inrush VA by using the following industry accepted formula:
Application Inrush VA =

$$
\sqrt{(\text { Inrush VA) })^{2}+(\text { Sealed VA })^{2}}
$$

2. Refer to the Regulation Chart. If the primary voltage is basically stable and does not vary by more than 5\% from nominal, the 90% secondary voltage column should be used. If the primary voltage carries between 5% and 10% of nominal, the 95% secondary voltage column should be used.
3. After determining the proper secondary voltage column, read down until a value equal to or greater than the Application Inrush VA is found. In no case should a figure less than the Application Inrush VA be used.
4. Read left to the Transformer VA Rating column to determine the proper transformer for this application. As a final check, make sure that the Transformer VA Rating is equal to or greater then the total sealed requirements. If not, select a transformer with a VA rating equal to or greater than the total sealed VA.
5. Refer to the following pages to determine the proper catalog number based on the transformer VA, and primary and secondary voltage requirements.

Regulation Chart

Transformer VA Rating	Inrush VA at 20\% Power Factor		
	95\% Secondary Voltage	$\mathbf{9 0 \%}$ Secondary Voltage	$\mathbf{8 5 \%}$ Secondary Voltage
25	100	130	150
50	170	200	240
75	310	410	540
100	370	540	730
150	780	930	1150
200	810	1150	1450
250	1400	1900	2300
300	1900	2700	3850
500	4000	5300	7400
750	8300	11000	1800
1000	9000	13000	18500
1500	1000	15000	20500
2000	1700	25500	3400
3000	24000	36000	47500
5000	55000	92500	115000

To comply with NEMA standards which require all magnetic devices to operate successfully at 85% of rated voltage, the 90% secondary voltage column is most often used in selecting a transformer.

Specifications

- Laminations are of the finest silicon steel to minimize core losses and to increase optimum performance and efficiency.
- Copper magnet wire of the highest quality assures efficient operation.
- Factory mounted type "K" fuse clips are standard on all single secondary transformers.
- Two jumper lines are standard with all transformers which can be jumpered.
- Optional type " M" fuse clips available for separate mounting.
- UL listed and CSA certified.
- 50/60 Hz rated.
- Insulation materials are of the highest rating available for the temperature class.
- Mounting brackets are heavy gauge steel to add strength to core construction and provide stable mounting. Slotted mounting feet permit easy installation.
- Attractive black finish: easy-to-read nameplate with complete rating data and wiring diagram.

Top View

Side View

Primary Volts$240 \times 480,230 \times 460,220 \times 240$				Secondary Volts 120/115/ 110				50/60Hz			
						ension	nche				
Catalog Number	VA Rating	Temp. Rise	Output Ampere	"A"	"B"	"C"	"D"	"E"	Mounting Slots	Approx. Wt. (lbs)	
MT0050A	50	$55^{\circ} \mathrm{C}$	0.43	3	3	2916	2	$21 / 2$	13/64 X ${ }^{3 / 8}$	2.6	
MT0075A	75	$55^{\circ} \mathrm{C}$	0.65	$31 / 2$	3	2916	$21 / 2$	$21 / 2$	13/64 X 3/8	3.5	
MT0100A	100	$55^{\circ} \mathrm{C}$	0.87	$33 / 8$	$33 / 8$	$27 / 8$	$23 / 8$	$213 / 16$	13/64 X $3 / 8$	4.2	
MT0150A	150	$55^{\circ} \mathrm{C}$	1.30	4	$33 / 4$	$33 / 16$	$27 / 8$	$31 / 8$	13/64 $\times 3 / 8$	6.7	0
MT0200A	200	$55^{\circ} \mathrm{C}$	1.74	4	$41 / 2$	$313 / 16$	$21 / 2$	$33 / 4$	${ }^{13 / 64 ~ X ~} 3 / 8$	8.5	V
MT0250A	250	$55^{\circ} \mathrm{C}$	2.17	$43 / 8$	$41 / 2$	$313 / 16$	$27 / 8$	$33 / 4$	${ }^{13 / 64} \times 3 / 8$	10.0	人
MT0300A	300	$55^{\circ} \mathrm{C}$	2.61	$43 / 4$	$41 / 2$	$313 / 16$	$31 / 4$	$33 / 4$	13/64 X $3 / 8$	11.3	Wunww
MT0350A	350	$55^{\circ} \mathrm{C}$	3.04	$51 / 4$	$41 / 2$	$313 / 16$	$33 / 4$	$33 / 4$	${ }^{13 / 64 \times 3 / 8}$	13.6	
MT0500A	500	$55^{\circ} \mathrm{C}$	4.35	$51 / 2$	$51 / 4$	$43 / 4$	$41 / 4$	$43 / 8$	$5 / 16 \times 11 / 16$	19.2	¢mmmmmmmmmm
MT0750A	750	$55^{\circ} \mathrm{C}$	6.52	7	$51 / 4$	$43 / 4$	$53 / 4$	$43 / 8$	$5 / 16 \times 11 / 16$	28.1	
MT1000A	1000	$115^{\circ} \mathrm{C}$	8.70	7 7 \%	$51 / 4$	4716	$51 / 2$	$43 / 8$	$9 / 32 \times 13 / 32$	29.8	${ }^{1110} 1$
MT1500A	1500	$115^{\circ} \mathrm{C}$	13.04	$63 / 4$	$63 / 4$	$5^{11 / 16}$	$3 \% 16$	$61 / 16$	$9 / 32 \times 13 / 32$	30.0	120 V
MT2000A	2000	$115^{\circ} \mathrm{C}$	17.39	7	$63 / 4$	$511 / 16$	47/16	$61 / 16$	$9 / 32 \times 13 / 32$	38.0	
MT3000A	3000	$115^{\circ} \mathrm{C}$	26.09	$71 / 2$	9	7916	$41 / 8$	$61 / 2$	$7 / 16 \mathrm{X}^{3 / 4}$	53.0	
MT5000A	5000	$115^{\circ} \mathrm{C}$	43.48	$73 / 4$	9	7 \% 16	6	$61 / 2$	7/16 X $3 / 4$	89.0	

Includes secondary fuse clip on sizes 50 through 750VA.

Includes secondary fuse clip on sizes 50 through 500VA.

Includes secondary fuse clip on sizes 50 through 500VA.

Primary Volts115×230		Secondary Volts 24$\quad 50 / 60 \mathrm{~Hz}$									$\|\longleftarrow 115 \mathrm{~V} \longrightarrow\|\|\|\longleftarrow 230 \mathrm{~V} \longrightarrow\|$
						ens	inche				
Catalog Number	VA Rating	Temp. Rise	Output Ampere	"A"	"B"	"C"	"D"	"E"	Mounting Slots	Approx. Wt. (lbs)	
MT0050D	50	$55^{\circ} \mathrm{C}$	2.08	3	3	2 \%16	2	$21 / 2$	13/64 X $3 / 8$	2.7	$\mathrm{H}_{1} \mathrm{H}_{3} 9 \mathrm{H}_{2}$
MT0075D	75	$55^{\circ} \mathrm{C}$	3.13	$31 / 2$	3	$2 \% 16$	$21 / 2$	$21 / 2$	13/64 $\mathrm{X}^{3 / 8}$	3.7	
MT0100D	100	$55^{\circ} \mathrm{C}$	4.17	$33 / 8$	$33 / 8$	$27 / 8$	$23 / 8$	$213 / 16$	13/64 X $3 / 8$	4.3	,
MT0150D	150	$55^{\circ} \mathrm{C}$	6.25	4	$33 / 4$	$33 / 16$	$27 / 8$	$31 / 8$	13/64 $\times 3 / 8$	6.8	wunuwn whwnem
MT0200D	200	$55^{\circ} \mathrm{C}$	8.33	4	$41 / 2$	3 13/16	$21 / 2$	$33 / 4$	13/64 $\times 3 / 8$	8.5	$\cdots m m m m m m m m$
MT0250D	250	$55^{\circ} \mathrm{C}$	10.42	$43 / 8$	$41 / 2$	$313 / 16$	$27 / 8$	$33 / 4$	13/64 X $3 / 8$	10.1	Mmmmmmm
MT0300D	300	$55^{\circ} \mathrm{C}$	12.50	$43 / 4$	$41 / 2$	3 13/16	$31 / 4$	$33 / 4$	13/64 X $3 / 8$	11.4	
MT0350D	350	$55^{\circ} \mathrm{C}$	14.58	$51 / 4$	$41 / 2$	$3{ }^{13 / 16}$	$33 / 4$	$33 / 4$	13/64 X $3 / 8$	13.4	$\longleftarrow 24 \mathrm{~V} \longrightarrow$
MT0500D	500	$55^{\circ} \mathrm{C}$	20.83	$51 / 2$	$191 / 5$	$43 / 4$	$41 / 4$	$43 / 8$	$5 / 16 \times 11 / 16$	19.2	x_{2} - ه x_{1}

Includes secondary fuse clip on sizes 50 through 500VA.

Primary Volts 540/575/600				Secondary Volts$\text { 110/115/ } 120$				50/60Hz			
Catalog Number	VA Rating	Temp. Rise	Output Ampere	Dimensions (inches)							
				"A"	"B"	"C"	"D"	"E"	Mounting Slots	Approx. Wt. (lbs)	
MT0050E	50	$55^{\circ} \mathrm{C}$	0.43	3	3	2916	2	$21 / 2$	13/64 X $3 / 8$	2.7	
MT0075E	75	$55^{\circ} \mathrm{C}$	0.65	$31 / 2$	3	$29 / 16$	$21 / 2$	$21 / 2$	13/64 X $3 / 8$	3.6	$\cdots \sim \sim$
MT0100E	100	$55^{\circ} \mathrm{C}$	0.87	$33 / 8$	$33 / 8$	$27 / 8$	$23 / 8$	$213 / 16$	13/64 X $3 / 8$	4.2	ค~
MT0150E	150	$55^{\circ} \mathrm{C}$	1.30	4	$33 / 4$	$33 / 16$	27/8	$31 / 8$	13/64 $\times 3 / 8$	6.8	
MT0200E	200	$55^{\circ} \mathrm{C}$	1.74	4	$41 / 2$	$313 / 16$	$21 / 2$	$33 / 4$	13/64 $\times 3 / 8$	8.4	
MT0250E	250	$55^{\circ} \mathrm{C}$	2.17	$43 / 8$	$41 / 2$	$313 / 16$	$27 / 8$	$33 / 4$	13/64 ${ }^{3 / 8}$	10.0	
MT0300E	300	$55^{\circ} \mathrm{C}$	2.61	$43 / 4$	$41 / 2$	3 13/16	$311 / 4$	$33 / 4$	13/64 ${ }^{3 / 8}$	11.3	
MT0350E	350	$55^{\circ} \mathrm{C}$	3.04	$51 / 4$	$41 / 2$	3 13/16	$33 / 4$	$33 / 4$	13/64 X 3/8	13.6	110 V 115 V
MT0500E	500	$55^{\circ} \mathrm{C}$	4.35	$5^{3 / 8}$	$51 / 4$	$43 / 4$	$41 / 4$	$43 / 8$	$5 / 16 \times 11 / 16$	16.8	$\mathrm{X}_{2} \downarrow{ }_{120 \mathrm{~V}}^{110 \mathrm{~V}}{ }^{\text {d }} \mathrm{X}_{1}$
MT0750E	750	$55^{\circ} \mathrm{C}$	6.32	7	$511 / 4$	$43 / 4$	$53 / 4$	$43 / 8$	$5 / 16 \times 11 / 16$	25.7	

Includes secondary fuse clip on sizes 50 through 750VA.

Primary Volts 208/277		Secondary Volts120											
Catalog Number	VA Rating	Temp. Rise	Output Ampere	Dimensions (inches)									
				"A"	"B"	"C"	"D"	"E"	Mounting Slots	Approx. Wt. (lbs)			
MT0050F	50	$55^{\circ} \mathrm{C}$	0.42	3	3	2916	2	$21 / 2$	$13 / 64 \times 3 / 8$	2.9			
MT0075F	75	$55^{\circ} \mathrm{C}$	0.63	$31 / 2$	3	$29 / 16$	$21 / 2$	$21 / 2$	$13 / 64 \times 3 / 8$	3.8			
MT0100F	100	$55^{\circ} \mathrm{C}$	0.83	$33 / 8$	$33 / 8$	$27 / 8$	$23 / 8$	$213 / 16$	$13 / 64 \times 3 / 8$	4.5			
MT0150F	150	$55^{\circ} \mathrm{C}$	1.25	4	$33 / 4$	$313 / 16$	$27 / 8$	$31 / 8$	$13 / 64 \times 3 / 8$	6.9			
MT0200F	200	$55^{\circ} \mathrm{C}$	1.67	4	$41 / 2$	$313 / 16$	$21 / 2$	$33 / 4$	$13 / 64 \times 3 / 8$	8.7			
MT0250F	250	$55^{\circ} \mathrm{C}$	2.08	$43 / 8$	$411 / 2$	$3^{13 / 16}$	$27 / 8$	$33 / 4$	$13 / 64 \times 3 / 8$	10.2			
MT0300F	300	$55^{\circ} \mathrm{C}$	2.50	$43 / 4$	4112	$313 / 16$	$31 / 4$	$33 / 4$	$13 / 64 \times 3 / 8$	11.4			
MT0350F	350	$55^{\circ} \mathrm{C}$	2.92	$51 / 4$	4112	$313 / 16$	$33 / 4$	$33 / 4$	$13 / 64 \times 3 / 8$	13.7			
MT0500F	500	$55^{\circ} \mathrm{C}$	4.17	$53 / 8$	$51 / 4$	$43 / 4$	$41 / 8$	$43 / 8$	$5 / 16 \times 11 / 16$	17.2			
MT0750F	750	$55^{\circ} \mathrm{C}$	6.25	7	$51 / 4$	$43 / 4$	$53 / 4$	$43 / 8$	$5 / 16 \times 11 / 16$	25.7			

Includes secondary fuse clip on sizes 50 through 750VA.

Specifications

Primary Volts 208/230/460				Secondary Volts 115				50/60Hz			
Catalog Number	VA Rating	Temp. Rise	Output Amperes	Dimensions (inches)						Approx. Wt. (lbs)	
				"A"	"B"	"C"	"D"	"E"	Mounting Slots		
MT0050G	50	$55^{\circ} \mathrm{C}$	0.43	$31 / 8$	3	2916	$21 / 8$	$21 / 2$	13/64 X $3 / 8$	2.8	
MT0075G	75	$55^{\circ} \mathrm{C}$	0.65	$33 / 8$	$33 / 8$	$27 / 8$	$23 / 8$	$213 / 16$	13/64 $\times 3 / 8$	4.3	
MT0100G	100	$55^{\circ} \mathrm{C}$	0.87	$311 / 16$	$33 / 8$	$27 / 8$	$211 / 16$	$213 / 16$	${ }^{13 / 64} \times 3 / 8$	4.9	-
MT0150G	150	$55^{\circ} \mathrm{C}$	1.30	$43 / 16$	$33 / 4$	$33 / 16$	$31 / 16$	$31 / 8$ 3	13/64 $\mathrm{X}^{3 / 8}$	7.4	Whanum
MT0200G	200	$55^{\circ} \mathrm{C}$	1.74	$41 / 4$	$41 / 2$	3 13/16	$23 / 4$	$33 / 4$	13/64 X $3 / 8$	9.4	unururus
MT0250G	250	$55^{\circ} \mathrm{C}$	2.17	$43 / 4$	$41 / 2$	3 13/16	$31 / 4$	$33 / 4$	13/64 ${ }^{3 / 8}$	11.1	
MT0300G	300	$55^{\circ} \mathrm{C}$	2.61	$51 / 4$	$41 / 2$	$313 / 16$	$33 / 4$	$33 / 4$	13/64 ${ }^{3 / 8}$	13.6	MMMMMM
MT0350G	350	$55^{\circ} \mathrm{C}$	3.04	$57 / 8$	$411 / 2$	$313 / 16$	$43 / 8$	$33 / 4$	${ }^{13 / 64 \times 3 / 8}$	15.6	
MT0500G	500	$55^{\circ} \mathrm{C}$	4.35	6	$51 / 4$	$43 / 4$	$43 / 4$	$43 / 8$	$5 / 16 \times 11 / 16$	21.0	
MT0750G	750	$55^{\circ} \mathrm{C}$	6.52	$73 / 8$	$51 / 4$	$43 / 4$	$53 / 4$	$43 / 8$	$5 / 16 \mathrm{X}^{11 / 116}$	30.0	
MT1000G	1000	$115^{\circ} \mathrm{C}$	8.70	$71 / 8$	$63 / 8$	$53 / 8$	$41 / 2$	5 5/16	5/16 X ${ }^{11 / 16}$	29.2	$\mathrm{X}_{2} \downarrow{ }^{115 \mathrm{~V}} \longrightarrow \mathrm{x}_{1}$
MT1500G	1500	$115^{\circ} \mathrm{C}$	13.04	$71 / 2$	$63 / 4$	$5^{11 / 16}$	47/16	$61 / 16$	9/32 $\times 1 / 16$	33.5	
MT2000G	2000	$115^{\circ} \mathrm{C}$	17.39	$81 / 4$	$63 / 4$	$5^{11 / 16}$	$51 / 4$	61116	9/32 $\times 1 / 16$	42.5	
MT3000G	3000	$115^{\circ} \mathrm{C}$	26.09	8	9	7 \% 16	$45 / 8$	$61 / 2$	7/16 $\mathrm{X}^{3 / 4}$	63.7	
MT5000G	5000	$115^{\circ} \mathrm{C}$	43.48	$10^{1 / 2}$	9	$103 / 16$	$61 / 2$	$61 / 2$	$7 / 16 \times 3 / 4$	102.0	

Includes secondary fuse clip on sizes 50 through 750VA.

Does not include secondary fuse clip.

Does not include secondary fuse clip.

Includes secondary fuse clip on sizes 50 through 500VA.

Air Cooled

A transformer which uses air as the cooling method medium. Term is abbreviated with the ANSI designation AA indicating open, natural draft ventilated construction.

Ambient Noise Level

The inherent or existing noise level of the surrounding area measured in decibels.

Ambient Temperature

The inherent or existing temperature of surrounding atmosphere into which the heat of a transformer is dissipated. Transformers are designed for $30^{\circ} \mathrm{C}$ average ambient temperature with a $40^{\circ} \mathrm{C}$ maximum during any 24 hour period.

Ampere

A unit of electric current flow.

ANSI

American National Standards Institute, Inc.- a recognized organization which specifies the standards for transformers.

ASTM

American Society for Testing Materials.

ATC

Air Terminal Chamber. See Terminal Chamber.

Attenuation

A term used to denote a decrease in magnitude in transmission from one point to another. Typically expressed as a ratio or in decibels, as in electrical noise attenuation.

Autotransformer

A transformer with one winding per phase in which part of the winding is common to both the primary and the secondary circuits.

Banked

Two or more single phase transformers connected together to supply a three phase load.

BIL

Basic Impulse Level measures the ability of the insulation system to withstand high voltage surges.

Buck-Boost

Small KVA, two-winding transformers typically wired as an autotransformer to raise or lower single and three phase line voltages by 10-20\%.

Cast Coil Transformer

Transformer with coils solidly case in epoxy resin under vacuum in a mold. Also called cast resin or epoxy cast coil transformer.

Center Tap

A reduced capacity tap at the midpoint in a winding. Also referred to as lighting tap.

Certified Test

Actual values taken during production testing which certify the values or results or testing to apply to a specific unit.

Coil

Turns of electrical grade wire or strip conductor material wound on a form; often referred to as winding.

Common Mode

Electrical noise or voltage disturbance that occurs between one of the line leads and the common ground, or between the ground plane and either the line or the neutral.

Compensated Transformer

A transformer with a tums ratio which provides a higher than rated voltage at no load and rated voltage at rated load. Such transformers cannot be used for reverse feed.

Conductor Losses

Losses in watts caused by the resistance of the transformer winding during a loaded condition. Also referred to as load loss or winding loss.

Continuous Rating

The constant load which a transformer can maintain indefinitely, at rated voltage and frequency, without exceeding its designed temperature rise.

Control Transformer

A transformer designed to provide good voltage regulation for control or instrumentation circuits having high inrush curent or low power factor conditions.

Copper Loss

See load loss.

Core

Electrical grade steel laminations which carries the magnetic flux.

Core Loss

Losses in watts caused by magnetization of the core and its resistance to magnetic flux when excited or energized at rated voltage and frequency. Also referred to as excitation loss or no-load loss.

Current Transformer

Transformer generally used in control or instrumentation circuits for measuring current.

Decibel (dB)

A standard unit of measure of intensity.

Delta

A standard three phase connection with the ends of each phase winding connected in series to form a loop with each phase 120 degrees from each other. Also referred to as 3-wire.

Delta-Wye

A term or symbol indicating the primary connected in delta and the secondary in wye when pertaining to a three phase transformer or transformer bank.

Dielectric Tests

A series of tests conducted to verify effectiveness of insulation materials and clearances used between tums and layers in the winding.

Distribution Transformer

Generally referred to as any transformer rated 500 KVA and below, except for current, potential, or other specialty transformers.

Dry Type

A transformer without liquid for cooling.

Dual Winding

A winding consisting of two separate parts which can be connected in series or in parallel. Also referred to as dual voltage or series multiple winding.

Electrostatic Shield

Conductor material placed between the primary and secondary windings which is grounded to reduce electrical noise or line interference.

Exciting Current

"No-load current" flowing in the winding used to excite the transformer when all other windings are open-circuited. Usually expressed in percent of the rated current of a winding in which it is measured.

Encapsulated

Transformer with coils either encased or cast in an epoxy resin or other encapsulating materials.

FCAN

"Full Capacity Above Normal." A designation for no-load taps indicating the taps are suitable for full-rated KVA at the designated voltages above nominal voltage.

FCBN

Same as above except Full Capacity Below Normal.

Fan Cooled

Cooled mechanically to maintain rated temperature rise, typically using auxiliary fans to accelerate heat dissipation.

Flexible Connection

A non-rigid connection used to eliminate transmission of noise and vibration.

Frequency

Designates the number of times, or complete cycles, that polarity altemates from positive to negative per unit of time; as in 60 cycles per second. Also referred to as Hertz.

Full Capacity Tap

Tap than can deliver rated KVA without exceeding its designated temperature rise.

Grounding Transformer

A special 3 phase autotransformer used to establish a stable neutral point on a 3-wire delta system. Also referred to as Zig-Zag transformer.

Grounding

Connecting one side of a circuit to earth; or creating a conducting path to some conducting body that serves in place of earth through low-resistance or low-impedance paths.

Hertz (Hz)

A term for AC frequency in cycles per second.

High Voltage Winding

Designates the winding with the greater voltage; designated as HV on the nameplate and as $\mathrm{H} 1, \mathrm{H} 2$, etc. on the termination.

Hi Pot

High potential dielectric test impressed on the windings to check insulation materials and clearances.

Impulse Tests

Dielectric test which determines BIL capability by applying high frequency, steep wave-front voltage between windings and ground.

Impedance

Retarding or opposing forces of current flow in AC circuit, expressed in percentage.

Induced Potential Test

A high frequency dielectric test which verifies the integrity of insulating materials and electrical clearances between tums and layers of a winding.

Inductance

A property which opposes a change in current flow.

Inrush Current

Abnormally high current, caused by residual flux in the core, which is occasionally drawn when a transformer is energized.

Insulating Transformer

One which the primary winding connected to the input or source, is insulated from the secondary winding connected to the output or load. Also referred to as two-winding or isolation transformers, which isolate the primary circuit from the secondary circuit.

Iron Loss

See No Load Loss or Core loss.

IR\%

Percent resistance. Voltage drop due to conductor resistance at rated current expressed in percent of rated voltage

IX\%

Percent reactance. Voltage drop due to reactance at rated current expressed in percent of rated voltage.

IZ\%
Percent impedance. Voltage drop due to impedance at rated current expressed in percent of rated voltage.

KVA

Kilovolt ampere rating with designates the capacity or output with a transformer can deliver at rated voltage and frequency without exceeding designed temperature rise. ($1 \mathrm{KVA}=1000 \mathrm{VA}$, or 1000 volt amperes).

Lamination

Thin sheets of special steel used to make the core of a transformer.

Liquid Transformer

A transformer which used mineral oil, or other dielectric fluid, which serves as an insulating and cooling medium.

Load Losses

Losses in watts which are the result of current flowing to the load. Also referred to as winding loss, copper loss, or conductor loss.

Mid-tap

A reduced capacity tap midway in a winding. Also referred to a Center tap; usually in the secondary winding.

NEC

National Electric Code.

NEMA

National Electrical Manufacturers Association.

No-load Loss

See core loss.

Oil Cooled

A transformer which uses oil as the cooling medium. Term is abbreviated with the ANSI designation OA indicating natural oil ambient ventilation.

Parallel Operation

Transformers having compatible design features with their appropriate terminals connected together.

Phase

Classification of an AC circuit; typically designated as single phase 2-wire or 3 -wire, or three phase 3-wire or 4-wire.

Polarity

Designates the instantaneous direction of the voltages in the primary compared to the secondary.

Potential Transformer

A transformer generally used in instrumentation circuits for measuring or controlling voltage.

Power Factor

The relation of watts to volt amps in a circuit.

Primary Rating

The input, source, or supply side connected to the primary of the transformer in a circuit.

Rating

The design characteristics, such as primary and secondary voltage, KVA, capacity, temperature rise, frequency, etc.

Ratio

Refers to the tums ratio or the voltage ratio between the primary and secondary winding.

Reactance

The effect of inductive and capacitive components of a AC circuit producing other than unity power factor.

Reactor

A single winding device with an air or iron core which produces a specific amount of inductive reactance into a circuit, usually to reduce or control current.

Reduced Capacity Taps

Taps which are rated for winding current only (versus rated KVA), thus reducing available power because of lower output voltage.

Regulation

The percent change in secondary output voltage when the load changes from full load to no-load at a given power factor.

Scott Connection

A transformer connection generally used to get a two phase output from the secondary of a three phase input, or vice versa.

Sealed Transformer

An enclosed transformer completely sealed from the outside environment and usually contains pressurized inert gas.

Secondary Rating

The output, or load side connected to the secondary of the transformer in a circuit.

Series/Multiple

A winding consisting of two or more sections which can be connected for series operation or multiple (parallel) operation. Also referred to as dual voltage or series-parallel.

Star Connection

Same as wye connection.

Step-down Transformer

One in which the energy transfer is from the high voltage winding (primary input circuit) to the low voltage winding (secondary output or load circuit).

Step-up Transformer

The energy transfer is from the low voltage winding to the high voltage winding; with the low voltage winding connected to the power source (primary input circuit) and the high voltage connected to the load (secondary output circuit).

T-connection

Use of Scott connection for three phase operation using two primary (main) and two secondary (teaser) coils.

Tap

A connection brought out of winding at some point between its extremities to permit changing the nominal voltage ratio. Taps are usually located in the high voltage winding, typically expressed as FCAN and FCBN for no-load operation.

Temperature Rise

The increase over ambient temperature of the winding due to energizing and loading the transformer; typically measured as either average rise by resistance or as hot-spot.

Terminal Chamber

An enclosure with space for making connection to a substation transformer, typically used when the transformer is not direct connected or close coupled to another device.

Total Losses

The transformer electrical losses which include no-load losses (core loss) and load losses (winding losses).

Tums Ratio

See Ratio.

Transformer

A static electrical device which by electromagnetic induction transforms energy at one voltage or current to another at the same frequency.

Transformer Tests

Normal, routing production tests include: (1) core loss (excitation loss or non-load loss); (2) load loss winding or copper loss; (3) Impedance; (4) Hi-pot - high voltage between windings and ground; (5) Induced double induced two time normal voltage. Optional special tests include:
(a) Heat Run - temperature testing;
(b) Noise tests - sound level measurement (c) Impulse tests - BIL tests.

Transverse Mode

Electrical noise or voltage disturbance that occurs between phase and neutral, or from spurious signals across the metallic hot line and the neutral conductor.

UL

Underwriters Laboratories.

Voltage Ratio

See Ratio.

Voltage Regulation

The change in secondary voltage which occurs when the load is reduced from rated value to zero, with the values of all other qualities remaining unchanged. Regulation may be expressed in percent (per unit) on the basis or rated secondary voltage at full load.

Winding Losses

See Load Losses.

Wye Connection

A three phase connection with similar ends of each phase connected together at a common point which forms the electrical neutral point which is typically grounded.

Zig-Zag

Special transformer connection commonly used with grounding transformers. See also grounding transformers.

[^0]: (1) Actual taps may vary based on volts/tum ratio.
 (2) Reduced capacity 1 phase tap - 5% rated KVA.

